Refine Your Search

Topic

Search Results

Journal Article

Dimethyl Ether Biogas Reactivity-Controlled Compression Ignition for Sustainable Power Generation with Low Nitrogen Oxide Emissions

2024-04-22
Abstract Biogas (60% methane–40% CO2 approximately) can be used in the reactivity-controlled compression ignition (RCCI) mode along with a high-reactivity fuel (HRF). In this work dimethyl ether (DME) that can also be produced from renewable sources was used as the HRF as a move toward sustainable power generation. The two-cylinder turbocharged diesel engine modified to work in the DME–biogas RCCI (DMB-RCCI) mode was studied under different proportions of methane (45–95%) in biogas since the quality of this fuel can vary depending on the feedstock and production method. Only a narrow range of biogas to DME ratios could be tolerated in this mode at each output without misfire or knock. Detailed experiments were conducted at brake mean effective pressures (BMEPs) of 3 and 5 bar at a speed of 1500 rpm and comparisons were made with the diesel–biogas dual-fuel and diesel–biogas RCCI modes under similar methane flow rates while the proportion of CO2 was varied.
Journal Article

Potential Analysis of Defossilized Operation of a Heavy-Duty Dual-Fuel Engine Utilizing Dimethyl Carbonate/Methyl Formate as Primary and Poly Oxymethylene Dimethyl Ether as Pilot Fuel

2024-04-18
Abstract This study demonstrates the defossilized operation of a heavy-duty port-fuel-injected dual-fuel engine and highlights its potential benefits with minimal retrofitting effort. The investigation focuses on the optical characterization of the in-cylinder processes, ranging from mixture formation, ignition, and combustion, on a fully optically accessible single-cylinder research engine. The article revisits selected operating conditions in a thermodynamic configuration combined with Fourier transform infrared spectroscopy. One approach is to quickly diminish fossil fuel use by retrofitting present engines with decarbonized or defossilized alternatives. As both fuels are oxygenated, a considerable change in the overall ignition limits, air–fuel equivalence ratio, burning rate, and resistance against undesired pre-ignition or knocking is expected, with dire need of characterization.
Journal Article

Hydrogen Injection Position Impact: Experimental Analysis of Central Direct Injection and Side Direct Injection in Engines

2024-04-18
Abstract A detailed investigation was carried out on the performance, combustion, and emissions of a single-cylinder direct injection hydrogen spark ignition (SI) engine with either a side-mounted direct injection (SDI) or a centrally installed direct injection (CDI) injector. The first part of the study analyzed the performance and emissions characteristics of CDI and SDI engine operations with different injection timings and pressures. This was followed by comparing the engine’s performance and emissions of the CDI and SDI operations at different engine speeds and relative air-to-fuel ratios (lambda) with the optimized injection pressure and timings. Furthermore, the performance and emission attributes of the hydrogen engine with the CDI and SDI setups were conducted at a fixed λ value of 2.75 across a broad spectrum of engine loads. The study’s main outcome demonstrates that both direct injection systems produced near-zero CO2, CO, and HC emissions.
Journal Article

Comparison of Tabulated and Complex Chemistry Approaches for Ammonia–Diesel Dual-Fuel Combustion Simulation

2024-04-18
Abstract Using ammonia as a carbon-free fuel is a promising way to reduce greenhouse gas emissions in the maritime sector. Due to the challenging fuel properties, like high autoignition temperature, high latent heat of vaporization, and low laminar flame speeds, a dual-fuel combustion process is the most promising way to use ammonia as a fuel in medium-speed engines. Currently, many experimental investigations regarding premixed and diffusive combustion are carried out. A numerical approach has been employed to simulate the complex dual-fuel combustion process to better understand the influences on the diffusive combustion of ammonia ignited by a diesel pilot. The simulation results are validated based on optical investigations conducted in a rapid compression–expansion machine (RCEM). The present work compares a tabulated chemistry simulation approach to complex chemistry-based simulations.
Journal Article

TOC

2024-04-15
Abstract TOC
Journal Article

Bayesian Network Model and Causal Analysis of Ship Collisions in Zhejiang Coastal Waters

2024-04-10
Abstract For taking counter measures in advance to prevent accidental risks, it is of significance to explore the causes and evolutionary mechanism of ship collisions. This article collects 70 ship collision accidents in Zhejiang coastal waters, where 60 cases are used for modeling while 10 cases are used for verification (testing). By analyzing influencing factors (IFs) and causal chains of accidents, a Bayesian network (BN) model with 19 causal nodes and 1 consequential node is constructed. Parameters of the BN model, namely the conditional probability tables (CPTs), are determined by mathematical statistics methods and Bayesian formulas. Regarding each testing case, the BN model’s prediction on probability of occurrence is above 80% (approaching 100% indicates the certainty of occurrence), which verifies the availability of the model. Causal analysis based on the backward reasoning process shows that H (Human error) is the main IF resulting in ship collisions.
Journal Article

Application of a Comprehensive Lagrangian–Eulerian Spark-Ignition Model to Different Operating Conditions

2024-04-08
Abstract Increasing engine efficiency is essential to reducing emissions, which is a priority for automakers. Unconventional modes such as boosted and highly dilute operation have the potential to increase engine efficiency but suffer from stability concerns and cyclic variability. To aid engineers in designing ignition systems that reduce cyclic variability in such engine operation modes, reliable and accurate spark-ignition models are necessary. In this article, a Lagrangian–Eulerian spark-ignition (LESI) model is used to simulate electrical discharge, spark channel elongation, and ignition in inert or reacting crossflow within a combustion vessel, at different pressures, flow speeds, and dilution rates. First the model formulation is briefly revisited. Then, the experimental and simulations setups are presented.
Journal Article

Assessing the Impact of Rubberized Asphalt on Reducing Hip Fracture Risk in Elderly Populations Using Human Body Models

2024-04-08
Abstract Compared to other age groups, older adults are at more significant risk of hip fracture when they fall. In addition to the higher risk of falls for the elderly, fear of falls can reduce this population’s outdoor activity. Various preventive solutions have been proposed to reduce the risk of hip fractures ranging from wearable hip protectors to indoor flooring systems. A previously developed rubberized asphalt mixture demonstrated the potential to reduce the risk of head injury. In the current study, the capability of the rubberized asphalt sample was evaluated for the risk of hip fracture for an average elderly male and an average elderly female. A previously developed human body model was positioned in a fall configuration that would give the highest impact forces toward regular asphalt.
Journal Article

Water Droplet Collison and Erosion on High-Speed Spinning Wheels

2024-04-04
Abstract The water droplet erosion (WDE) on high-speed rotating wheels appears in several engineering fields such as wind turbines, stationary steam turbines, fuel cell turbines, and turbochargers. The main reasons for this phenomenon are the high relative velocity difference between the colliding particles and the rotor, as well as the presence of inadequate material structure and surface parameters. One of the latest challenges in this area is the compressor wheels used in turbochargers, which has a speed up to 300,000 rpm and have typically been made of aluminum alloy for decades, to achieve the lowest possible rotor inertia. However, while in the past this component was only encountered with filtered air, nowadays, due to developments in compliance with tightening emission standards, various fluids also collide with the spinning blades, which can cause mechanical damage.
Journal Article

Fire Safety of Battery Electric Vehicles: Hazard Identification, Detection, and Mitigation

2024-03-21
Abstract Battery electric vehicles (EVs) bring significant benefits in reducing the carbon footprint of fossil fuels and new opportunities for adopting renewable energy. Because of their high-energy density and long cycle life, lithium-ion batteries (LIBs) are dominating the battery market, and the consumer demand for LIB-powered EVs is expected to continue to boom in the next decade. However, the chemistry used in LIBs is still vulnerable to experiencing thermal runaway, especially in harsh working conditions. Furthermore, as LIB technology moves to larger scales of power and energy, the safety issues turn out to be the most intolerable pain point of its application in EVs. Its failure could result in the release of toxic gases, fire, and even explosions, causing catastrophic damage to life and property. Vehicle fires are an often-overlooked part of the fire problem. Fire protection and EV safety fall into different disciplines.
Journal Article

How Drivers Lose Control of the Car

2024-03-06
Abstract After a severe lane change, a wind gust, or another disturbance, the driver might be unable to recover the intended motion. Even though this fact is known by any driver, the scientific investigation and testing on this phenomenon is just at its very beginning, as a literature review, focusing on SAE Mobilus® database, reveals. We have used different mathematical models of car and driver for the basic description of car motion after a disturbance. Theoretical topics such as nonlinear dynamics, bifurcations, and global stability analysis had to be tackled. Since accurate mathematical models of drivers are still unavailable, a couple of driving simulators have been used to assess human driving action. Classic unstable motions such as Hopf bifurcations were found. Such bifurcations seem almost disregarded by automotive engineers, but they are very well-known by mathematicians. Other classic unstable motions that have been found are “unstable limit cycles.”
Journal Article

Employing a Model of Computation for Testing and Verifying the Security of Connected and Autonomous Vehicles

2024-03-05
Abstract Testing and verifying the security of connected and autonomous vehicles (CAVs) under cyber-physical attacks is a critical challenge for ensuring their safety and reliability. Proposed in this article is a novel testing framework based on a model of computation that generates scenarios and attacks in a closed-loop manner, while measuring the safety of the unit under testing (UUT), using a verification vector. The framework was applied for testing the performance of two cooperative adaptive cruise control (CACC) controllers under false data injection (FDI) attacks. Serving as the baseline controller is one of a traditional design, while the proposed controller uses a resilient design that combines a model and learning-based algorithm to detect and mitigate FDI attacks in real-time.
Journal Article

Effect of Turbine Speed Parameter on Exhaust Pulse Energy Matching of an Asymmetric Twin-Scroll Turbocharged Heavy-Duty Engine

2024-03-04
Abstract The two-branch exhaust of an asymmetric twin-scroll turbocharged engine are asymmetrically and periodically complicated, which has great impact on turbine matching. In this article, a matching effect of turbine speed parameter on asymmetric twin-scroll turbines based on the exhaust pulse energy weight distribution of a heavy-duty diesel engine was introduced. First, it was built as an asymmetric twin-scroll turbine matching based on exhaust pulse energy distribution. Then, by comparing the average matching point and energy matching points on the corresponding turbine performance map, it is revealed that the turbine speed parameter of energy matching points was a significant deviation from the turbine speed parameter under peak efficiency, which leads to the actual turbine operating efficiency lower than the optimal state.
Journal Article

Safety Concepts for Future Electromechanical Brake Actuators

2024-02-16
Abstract A growing interest in electromechanical brakes (EMB) is discernible in the automotive industry finding its climax in an announcement of EMB series production in late 2022 [1]. The introduction of EMB allows for new design opportunities using distributed software on smart actuators. However, additional efforts are needed to ensure continuously high levels of safety even when established design principles in the brake system are changed. This article discusses different safety concepts that could potentially be put in place in EMB actuators. Therefore, safety goals that need to be satisfied by an actuator are derived. Furthermore, three different degrees of complexity are differentiated, evolving to different required electronic control units (ECU) and architectures. Additionally, also the safety of the actuation unit (AU) is considered to realize a holistic safety concept for the actuator. Finally, a conclusion is drawn comparing the different investigated concepts.
Journal Article

Forensic Analysis of Lithium-Ion Cells Involved in Fires

2024-02-14
Abstract The emerging use of rechargeable batteries in electric and hybrid electric vehicles and distributed energy systems, and accidental fires involving batteries, has heightened the need for a methodology to determine the root cause of the fire. When a fire involving batteries takes place, investigators and engineers need to ascertain the role of batteries in that fire. Just as with fire in general, investigators need a framework for determining the role that is systematic, reliant on collection and careful analysis of forensic evidence, and based on the scientific method of inquiry. This article presents a systematic scientific process to analyze batteries that have been involved in a fire. It involves examining Li-ion cells of varying construction, using a systematic process that includes visual inspection, x-ray, CT scan, and possibly elemental analysis and testing of exemplars.
Journal Article

Use of Artificial Neural Network to Develop Surrogates for Hydrotreated Vegetable Oil with Experimental Validation in Ignition Quality Tester

2024-02-01
Abstract This article presents surrogate mixtures that simulate the physical and chemical properties in the auto-ignition of hydrotreated vegetable oil (HVO). Experimental investigation was conducted in the Ignition Quality Tester (IQT) to validate the auto-ignition properties with respect to those of the target fuel. The surrogate development approach is assisted by artificial neural network (ANN) embedded in MATLAB optimization function. Aspen HYSYS is used to calculate the key physical and chemical properties of hundreds of mixtures of representative components, mainly alkanes—the dominant components of HVO, to train the learning algorithm. Binary and ternary mixtures are developed and validated in the IQT. The target properties include the derived cetane number (DCN), density, viscosity, surface tension, molecular weight, and volatility represented by the distillation curve. The developed surrogates match the target fuel in terms of ignition delay and DCN within 6% error range.
Journal Article

A Novel Approach to Light Detection and Ranging Sensor Placement for Autonomous Driving Vehicles Using Deep Deterministic Policy Gradient Algorithm

2024-01-31
Abstract This article presents a novel approach to optimize the placement of light detection and ranging (LiDAR) sensors in autonomous driving vehicles using machine learning. As autonomous driving technology advances, LiDAR sensors play a crucial role in providing accurate collision data for environmental perception. The proposed method employs the deep deterministic policy gradient (DDPG) algorithm, which takes the vehicle’s surface geometry as input and generates optimized 3D sensor positions with predicted high visibility. Through extensive experiments on various vehicle shapes and a rectangular cuboid, the effectiveness and adaptability of the proposed method are demonstrated. Importantly, the trained network can efficiently evaluate new vehicle shapes without the need for re-optimization, representing a significant improvement over classical methods such as genetic algorithms.
Journal Article

Modal Analysis of Combustion Chamber Acoustic Resonance to Reduce High-Frequency Combustion Noise in Pre-Chamber Jet Ignition Combustion Engines

2024-01-31
Abstract The notable increase in combustion noise in the 7–10 kHz band has become an issue in the development of pre-chamber jet ignition combustion gasoline engines that aim for enhanced thermal efficiency. Combustion noise in such a high-frequency band is often an issue in diesel engine development and is known to be due to resonance in the combustion chamber. However, there are few cases of it becoming a serious issue in gasoline engines, and effective countermeasures have not been established. The authors therefore decided to elucidate the mechanism of high-frequency combustion noise generation specific to this engine, and to investigate effective countermeasures. As the first step, in order to analyze the combustion chamber resonance modes of this engine in detail, calculation analysis using a finite element model and experimental modal analysis using an acoustic excitation speaker were conducted.
Journal Article

Integrated Four-Wheel Steering and Direct Yaw-Moment Control for Autonomous Collision Avoidance on Curved Road

2024-01-25
Abstract An automatic collision avoidance control method integrating optimal four-wheel steering (4WS) and direct yaw-moment control (DYC) for autonomous vehicles on curved road is proposed in this study. Optimal four-wheel steering is used to track a predetermined trajectory, and DYC is adopted for vehicle stability. Two single lane change collision avoidance scenarios, i.e., a stationary obstacle in front and a moving obstacle at a lower speed in the same lane, are constructed to verify the proposed control method. The main contributions of this article include (1) a quintic polynomial lane change trajectory for collision avoidance on curved road is proposed and (2) four different kinds of control method for autonomous collision avoidance, namely 2WS, 2WS+DYC, 4WS, and 4WS+DYC, are compared. In the design of DYC controller, two different feedback control methods are adopted for comparison, i.e., sideslip angle feedback and yaw rate feedback.
X