Refine Your Search

Topic

Search Results

Journal Article

Dimethyl Ether Biogas Reactivity-Controlled Compression Ignition for Sustainable Power Generation with Low Nitrogen Oxide Emissions

2024-04-22
Abstract Biogas (60% methane–40% CO2 approximately) can be used in the reactivity-controlled compression ignition (RCCI) mode along with a high-reactivity fuel (HRF). In this work dimethyl ether (DME) that can also be produced from renewable sources was used as the HRF as a move toward sustainable power generation. The two-cylinder turbocharged diesel engine modified to work in the DME–biogas RCCI (DMB-RCCI) mode was studied under different proportions of methane (45–95%) in biogas since the quality of this fuel can vary depending on the feedstock and production method. Only a narrow range of biogas to DME ratios could be tolerated in this mode at each output without misfire or knock. Detailed experiments were conducted at brake mean effective pressures (BMEPs) of 3 and 5 bar at a speed of 1500 rpm and comparisons were made with the diesel–biogas dual-fuel and diesel–biogas RCCI modes under similar methane flow rates while the proportion of CO2 was varied.
Journal Article

Potential Analysis of Defossilized Operation of a Heavy-Duty Dual-Fuel Engine Utilizing Dimethyl Carbonate/Methyl Formate as Primary and Poly Oxymethylene Dimethyl Ether as Pilot Fuel

2024-04-18
Abstract This study demonstrates the defossilized operation of a heavy-duty port-fuel-injected dual-fuel engine and highlights its potential benefits with minimal retrofitting effort. The investigation focuses on the optical characterization of the in-cylinder processes, ranging from mixture formation, ignition, and combustion, on a fully optically accessible single-cylinder research engine. The article revisits selected operating conditions in a thermodynamic configuration combined with Fourier transform infrared spectroscopy. One approach is to quickly diminish fossil fuel use by retrofitting present engines with decarbonized or defossilized alternatives. As both fuels are oxygenated, a considerable change in the overall ignition limits, air–fuel equivalence ratio, burning rate, and resistance against undesired pre-ignition or knocking is expected, with dire need of characterization.
Journal Article

Hydrogen Injection Position Impact: Experimental Analysis of Central Direct Injection and Side Direct Injection in Engines

2024-04-18
Abstract A detailed investigation was carried out on the performance, combustion, and emissions of a single-cylinder direct injection hydrogen spark ignition (SI) engine with either a side-mounted direct injection (SDI) or a centrally installed direct injection (CDI) injector. The first part of the study analyzed the performance and emissions characteristics of CDI and SDI engine operations with different injection timings and pressures. This was followed by comparing the engine’s performance and emissions of the CDI and SDI operations at different engine speeds and relative air-to-fuel ratios (lambda) with the optimized injection pressure and timings. Furthermore, the performance and emission attributes of the hydrogen engine with the CDI and SDI setups were conducted at a fixed λ value of 2.75 across a broad spectrum of engine loads. The study’s main outcome demonstrates that both direct injection systems produced near-zero CO2, CO, and HC emissions.
Journal Article

Characterization of Pyrolysis Oil Extracted from High Lignocellulosic Groundnut Shell Biomass

2024-04-18
Abstract Fossil fuel reserves are swiftly depleting when consumer demand for these fuels continues to rise. In order to meet the demand and diminish the pollution derived through conventional fuels, it is crucial to employ cleaner fuels made from substitutes such as waste biomass. Also, converting waste biomass to fuel can lower usage of landfills. There are many biomass resources that are suitable for fuel production, out of which groundnut is also a potential feedstock. Groundnut shell biomass was chosen for this study, as it is a waste leftover during shelling of groundnuts for various commercial applications. The procured groundnut shells were converted to oil using pyrolysis process and was distilled. Both the pyrolysis oil and the distilled oil were analyzed using Fourier transform infrared instrument wherein the presence of functional groups such as alcohols, amines, and carboxylic acids were identified.
Journal Article

TOC

2024-04-15
Abstract TOC
Journal Article

Spectroscopy-Based Machine Learning Approach to Predict Engine Fuel Properties of Biodiesel

2024-04-11
Abstract Various feedstocks can be employed for biodiesel production, leading to considerable variation in composition and engine fuel characteristics. Using biodiesels originating from diverse feedstocks introduces notable variations in engine characteristics. Therefore, it is imperative to scrutinize the composition and properties of biodiesel before deployment in engines, a task facilitated by predictive models. Additionally, the international commercialization of biodiesel fuel is contingent upon stringent regulations. The traditional experimental measurement of biodiesel properties is laborious and expensive, necessitating skilled personnel. Predictive models offer an alternative approach by estimating biodiesel properties without depending on experimental measurements. This research is centered on building models that correlate mid-infrared spectra of biodiesel and critical fuel properties, encompassing kinematic viscosity, cetane number, and calorific value.
Journal Article

Suitability Study of Biofuel Blend for Light Commercial Vehicle Application under Real-World Transient Operating Conditions

2024-04-10
Abstract Driving schedule of every vehicle involves transient operation in the form of changing engine speed and load conditions, which are relatively unchanged during steady-state conditions. As well, the results from transient conditions are more likely to reflect the reality. So, the current research article is focused on analyzing the biofuel-like lemon peel oil (LPO) behavior under real-world transient conditions with fuel injection parameter MAP developed from steady-state experiments. At first, engine parameters and response MAPs are developed by using a response surface methodology (RSM)-based multi-objective optimization technique. Then, the vehicle model has been developed by incorporating real-world transient operating conditions. Finally, the developed injection parameters and response MAPs are embedded in the vehicle model to analyze the biofuel behavior under transient operating conditions.
Journal Article

Application of a Comprehensive Lagrangian–Eulerian Spark-Ignition Model to Different Operating Conditions

2024-04-08
Abstract Increasing engine efficiency is essential to reducing emissions, which is a priority for automakers. Unconventional modes such as boosted and highly dilute operation have the potential to increase engine efficiency but suffer from stability concerns and cyclic variability. To aid engineers in designing ignition systems that reduce cyclic variability in such engine operation modes, reliable and accurate spark-ignition models are necessary. In this article, a Lagrangian–Eulerian spark-ignition (LESI) model is used to simulate electrical discharge, spark channel elongation, and ignition in inert or reacting crossflow within a combustion vessel, at different pressures, flow speeds, and dilution rates. First the model formulation is briefly revisited. Then, the experimental and simulations setups are presented.
Journal Article

Modeling Approach for Hybrid Integration of Renewable Energy Sources with Vehicle-to-Grid Technology

2024-03-29
Abstract This article presents a technical study on the integration of hybrid renewable energy sources (RES) with vehicle-to-grid (V2G) technology, aiming to enhance energy efficiency, grid stability, and mitigating power imbalances. The growing adoption of RES and electric vehicles (EV) necessitates innovative solutions to mitigate intermittency and optimize resource utilization. The study’s primary objective is to design and analyze a hybrid distribution generation system encompassing solar photovoltaic (PV) and wind power stations, along with a conventional diesel generator, connected to the utility grid. A V2G system is strategically embedded within the microgrid to facilitate bidirectional power exchange between EV and the grid. Methodologically, MATLAB/Simulink® 2021a is employed to simulate the system’s performance over one day.
Journal Article

Research on the Control Strategy for Handling Stability of Electric Power Steering System with Active Front Wheel Steering Function

2024-02-07
Abstract Due to the presence of uncertain disturbances in the actual steering system, disturbances in the system may affect the handling stability of the vehicle. Therefore, this article proposes an integrated steering system control strategy with stronger anti-disturbance performance. When disturbances exist in the system, the proposed control strategy effectively reduces the attitude changes during the vehicle steering process. In the upper-level control strategy, a variable transmission ratio curve is designed to coordinate the high-speed handling stability and low-speed steering sensitivity of the vehicle. On this basis, a sideslip angle observer is proposed based on the extended state observation theory, which does not depend on an accurate system model, thus determining the intervention timing of the active front wheel steering system. In the lower-level control strategy, DR-PI/DR-PID controllers are designed for the integrated steering system.
Journal Article

Time Domain Analysis of Ride Comfort and Energy Dissipation Characteristics of Automotive Vibration Proportional–Integral–Derivative Control

2024-02-05
Abstract A time domain analysis method of ride comfort and energy dissipation characteristics is proposed for automotive vibration proportional–integral–derivative (PID) control. A two-degrees-of-freedom single wheel model for automotive vibration control is established, and the conventional vibration response variables for ride comfort evaluation and the energy consumption vibration response variables for energy dissipation characteristics evaluation are determined, and the Routh stability criterion method was introduced to assess the impact of PID control on vehicle stability. The PID control parameters are tuned using the differential evolution algorithm, and to improve the algorithm’s adaptive ability, an adaptive operator is introduced, so that the mutation factor of differential evolution algorithm can change with the number of iterations.
Journal Article

Use of Artificial Neural Network to Develop Surrogates for Hydrotreated Vegetable Oil with Experimental Validation in Ignition Quality Tester

2024-02-01
Abstract This article presents surrogate mixtures that simulate the physical and chemical properties in the auto-ignition of hydrotreated vegetable oil (HVO). Experimental investigation was conducted in the Ignition Quality Tester (IQT) to validate the auto-ignition properties with respect to those of the target fuel. The surrogate development approach is assisted by artificial neural network (ANN) embedded in MATLAB optimization function. Aspen HYSYS is used to calculate the key physical and chemical properties of hundreds of mixtures of representative components, mainly alkanes—the dominant components of HVO, to train the learning algorithm. Binary and ternary mixtures are developed and validated in the IQT. The target properties include the derived cetane number (DCN), density, viscosity, surface tension, molecular weight, and volatility represented by the distillation curve. The developed surrogates match the target fuel in terms of ignition delay and DCN within 6% error range.
Journal Article

Integrated Four-Wheel Steering and Direct Yaw-Moment Control for Autonomous Collision Avoidance on Curved Road

2024-01-25
Abstract An automatic collision avoidance control method integrating optimal four-wheel steering (4WS) and direct yaw-moment control (DYC) for autonomous vehicles on curved road is proposed in this study. Optimal four-wheel steering is used to track a predetermined trajectory, and DYC is adopted for vehicle stability. Two single lane change collision avoidance scenarios, i.e., a stationary obstacle in front and a moving obstacle at a lower speed in the same lane, are constructed to verify the proposed control method. The main contributions of this article include (1) a quintic polynomial lane change trajectory for collision avoidance on curved road is proposed and (2) four different kinds of control method for autonomous collision avoidance, namely 2WS, 2WS+DYC, 4WS, and 4WS+DYC, are compared. In the design of DYC controller, two different feedback control methods are adopted for comparison, i.e., sideslip angle feedback and yaw rate feedback.
Journal Article

Development of a Turbulent Jet-Controlled Compression Ignition Engine Concept Using Spray-Guided Stratification for Fueling a Passive Prechamber

2024-01-24
Abstract Improving thermal efficiency of an internal combustion engine is one of the most cost-effective ways to reduce life cycle-based CO2 emissions for transportation. Lean burn technology has the potential to reach high thermal efficiency if simultaneous low NOx, HC, and CO emissions can be achieved. Low NOx can be realized by ultra-lean (λ ≥ 2) spark-ignited combustion; however, the HC and CO emissions can increase due to slow flame propagation and high combustion variability. In this work, we introduce a new combustion concept called turbulent jet-controlled compression ignition, which utilizes multiple turbulent jets to ignite the mixture and subsequently triggers end gas autoignition. As a result, the ultra-lean combustion is further improved with reduced late-cycle combustion duration and enhanced HC and CO oxidation. A low-cost passive prechamber is innovatively fueled using a DI injector in the main combustion chamber through spray-guided stratification.
Journal Article

Path-Tracking Control of Soft-Target Vehicle Test System Based on Compensation Weight Coefficient Matrix and Adaptive Preview Time

2024-01-18
Abstract In order to enhance the path-tracking accuracy and adaptability of the electric flatbed vehicle (EFV) in the soft-target vehicle test system, an improved controller is designed based on the linear quadratic regulator (LQR) algorithm. First, the LQR feedback controller is designed based on the EFV dynamics tracking error model, and the genetic algorithm is utilized to obtain the optimal weight coefficient matrix for different speeds. Second, a weight coefficient matrix compensation strategy is proposed to address the changes in the relationship between the vehicle–road position and attitude caused by external disturbances and the state of EFV. An offline parameter table is created to reduce the computational load on the microcontroller of EFV and enhance real-time path-tracking performance. Furthermore, an adaptive preview time control strategy is added to reduce the overshooting caused by control delay. This strategy is based on road curvature and traveling speed.
Journal Article

Improvement of Traction Force Estimation in Cornering through Neural Network

2024-01-04
Abstract Accurate estimation of traction force is essential for the development of advanced control systems, particularly in the domain of autonomous driving. This study presents an innovative approach to enhance the estimation of tire–road interaction forces under combined slip conditions, employing a combination of empirical models and neural networks. Initially, the well-known Pacejka formula, or magic formula, was adopted to estimate tire–road interaction forces under pure longitudinal slip conditions. However, it was observed that this formula yielded unsatisfactory results under non-pure slip conditions, such as during curves. To address this challenge, a neural network architecture was developed to predict the estimation error associated with the Pacejka formula. Two distinct neural networks were developed. The first neural network employed, as inputs, both longitudinal slip ratios of the driving wheels and the slip angles of the driving wheels.
Journal Article

Machine Learning Tabulation Scheme for Fast Chemical Kinetics Computation

2023-12-28
Abstract This study proposes a machine learning tabulation (MLT) method that employs deep neural networks (DNNs) to predict ignition delay and knock propensity in spark ignition (SI) engines. The commonly used Arrhenius model and Livengood–Wu integral for fast knock prediction are not accurate enough to account for residual gas species and may require adjustments or modifications to account for specific engine characteristics. Detailed kinetics modeling is computationally expensive, so the MLT approach is introduced to solve these issues. The MLT method uses precalculated thermochemical states of the mixture that are clustered based on a combustion progress variable. Hundreds of DNNs are trained with the stochastic Levenberg–Marquardt (SLM) optimization algorithm, reducing training time and memory requirements for large-scale problems. MLT has high interpolation accuracy, eliminates the need for table storage, and reduces memory requirements by three orders of magnitude.
Journal Article

Combustion Optimization of a Premixed Ultra-Lean Blend of Natural Gas and Hydrogen in a Dual Fuel Engine Running at Low Load

2023-12-01
Abstract The numerical study presented in this article is based on an automotive diesel engine (2.8 L, 4-cylinder, turbocharged), considering a NG–H2 blend with 30 vol% of H2, ignited by multiple diesel fuel injections. The 3D-CFD investigation aims at improving BTE, CO, and UHC emissions at low load, by means of an optimization of the diesel fuel injection strategy and of the in-cylinder turbulence (swirl ratio, SR). The operating condition is 3000 rpm – BMEP = 2 bar, corresponding to about 25% of the maximum load of a gen-set engine, able to deliver up to 83 kW at 3000 rpm (rated speed). The reference diesel fuel injection strategy, adopted in all the previous numerical and experimental studies, is a three-shot mode. The numerical optimization carried out in this study consisted in finding the optimal number of injections per cycle, as well as the best timing of each injection and the fuel mass split among the injections.
Journal Article

A Comparative Study of Longitudinal Vehicle Control Systems in Vehicle-to-Infrastructure Connected Corridor

2023-11-16
Abstract Vehicle-to-infrastructure (V2I) connectivity technology presents the opportunity for vehicles to perform autonomous longitudinal control to navigate safely and efficiently through sequences of V2I-enabled intersections, known as connected corridors. Existing research has proposed several control systems to navigate these corridors while minimizing energy consumption and travel time. This article analyzes and compares the simulated performance of three different autonomous navigation systems in connected corridors: a V2I-informed constant acceleration kinematic controller (V2I-K), a V2I-informed model predictive controller (V2I-MPC), and a V2I-informed reinforcement learning (V2I-RL) agent. A rules-based controller that does not use V2I information is implemented to simulate a human driver and is used as a baseline. The performance metrics analyzed are net energy consumption, travel time, and root-mean-square (RMS) acceleration.
Journal Article

Methanol (M85) Port Fuel-Injected Spark Ignition Motorcycle Engine Development—Part 1: Combustion Optimization for Efficiency Improvement and Emission Reduction

2023-10-27
Abstract Limited fossil fuel resources and carbonaceous greenhouse gas emissions are two major problems the world faces today. Alternative fuels can effectively power internal combustion engines to address these issues. Methanol can be an alternative to conventional fuels, particularly to displace gasoline in spark ignition engines. The physicochemical properties of methanol are significantly different than baseline gasoline and fuel mixture-aim lambda; hence methanol-fueled engines require modifications in the fuel injection parameters. This study optimized the fuel injection quantity, spark timing, and air–fuel ratio for M85 (85% v/v methanol + 15% v/v gasoline) fueling of a port fuel-injected single-cylinder 500 cc motorcycle test engine. Comparative engine performance, combustion, and emissions analyses were performed for M85 and baseline gasoline.
X