Refine Your Search

Topic

Search Results

Journal Article

Determination of Air–Fuel Ratio at 1 kHz via Mid-Infrared Laser Absorption and Fast Flame Ionization Detector Measurements in Engine-Out Vehicle Exhaust

2024-04-29
Abstract Measurements of air–fuel ratio (AFR) and λ (AFRactual/AFRstoich) are crucial for understanding internal combustion engine (ICE) performance. However, current λ sensors suffer from long light-off times (on the order of seconds following a cold start) and limited time resolution. In this study, a four-color mid-infrared laser absorption spectroscopy (LAS) sensor was developed to provide 5 kHz measurements of temperature, CO, CO2, and NO in engine-out exhaust. This LAS sensor was then combined with 1 kHz hydrocarbon (HC) measurements from a flame ionization detector (FID), and the Spindt exhaust gas analysis method to provide 1 kHz measurements of λ. To the authors’ knowledge, this is the first time-resolved measurement of λ during engine cold starts using the full Spindt method. Three tests with various engine AFR calibrations were conducted and analyzed: (1) 10% lean, (2) stoichiometric, and (3) 10% rich.
Journal Article

Combustion Analysis of Active Pre-Chamber Design for Ultra-Lean Engine Operation

2024-04-27
Abstract In this article, the effects of mixture dilution using EGR or excessive air on adiabatic flame temperature, laminar flame speed, and minimum ignition energy are studied to illustrate the fundamental benefits of lean combustion. An ignition system developing a new active pre-chamber (APC) design was assessed, aimed at improving the indicated thermal efficiency (ITE) of a 1.5 L four-cylinder gasoline direct injection (GDI) engine. The engine combustion process was simulated with the SAGE detailed chemistry model within the CONVERGE CFD tool, assuming the primary reference fuel (PRF) to be a volumetric mixture of 93% iso-octane and 7% n-heptane. The effects of design parameters, such as APC volume, nozzle diameter, and nozzle orientations, on ITE were studied. It was found that the ignition jet velocity from the pre-chamber to the main chamber had a significant impact on the boundary heat losses and combustion phasing.
Journal Article

Potential Analysis of Defossilized Operation of a Heavy-Duty Dual-Fuel Engine Utilizing Dimethyl Carbonate/Methyl Formate as Primary and Poly Oxymethylene Dimethyl Ether as Pilot Fuel

2024-04-18
Abstract This study demonstrates the defossilized operation of a heavy-duty port-fuel-injected dual-fuel engine and highlights its potential benefits with minimal retrofitting effort. The investigation focuses on the optical characterization of the in-cylinder processes, ranging from mixture formation, ignition, and combustion, on a fully optically accessible single-cylinder research engine. The article revisits selected operating conditions in a thermodynamic configuration combined with Fourier transform infrared spectroscopy. One approach is to quickly diminish fossil fuel use by retrofitting present engines with decarbonized or defossilized alternatives. As both fuels are oxygenated, a considerable change in the overall ignition limits, air–fuel equivalence ratio, burning rate, and resistance against undesired pre-ignition or knocking is expected, with dire need of characterization.
Journal Article

Bayesian Network Model and Causal Analysis of Ship Collisions in Zhejiang Coastal Waters

2024-04-10
Abstract For taking counter measures in advance to prevent accidental risks, it is of significance to explore the causes and evolutionary mechanism of ship collisions. This article collects 70 ship collision accidents in Zhejiang coastal waters, where 60 cases are used for modeling while 10 cases are used for verification (testing). By analyzing influencing factors (IFs) and causal chains of accidents, a Bayesian network (BN) model with 19 causal nodes and 1 consequential node is constructed. Parameters of the BN model, namely the conditional probability tables (CPTs), are determined by mathematical statistics methods and Bayesian formulas. Regarding each testing case, the BN model’s prediction on probability of occurrence is above 80% (approaching 100% indicates the certainty of occurrence), which verifies the availability of the model. Causal analysis based on the backward reasoning process shows that H (Human error) is the main IF resulting in ship collisions.
Journal Article

Assessing the Impact of Rubberized Asphalt on Reducing Hip Fracture Risk in Elderly Populations Using Human Body Models

2024-04-08
Abstract Compared to other age groups, older adults are at more significant risk of hip fracture when they fall. In addition to the higher risk of falls for the elderly, fear of falls can reduce this population’s outdoor activity. Various preventive solutions have been proposed to reduce the risk of hip fractures ranging from wearable hip protectors to indoor flooring systems. A previously developed rubberized asphalt mixture demonstrated the potential to reduce the risk of head injury. In the current study, the capability of the rubberized asphalt sample was evaluated for the risk of hip fracture for an average elderly male and an average elderly female. A previously developed human body model was positioned in a fall configuration that would give the highest impact forces toward regular asphalt.
Journal Article

Water Droplet Collison and Erosion on High-Speed Spinning Wheels

2024-04-04
Abstract The water droplet erosion (WDE) on high-speed rotating wheels appears in several engineering fields such as wind turbines, stationary steam turbines, fuel cell turbines, and turbochargers. The main reasons for this phenomenon are the high relative velocity difference between the colliding particles and the rotor, as well as the presence of inadequate material structure and surface parameters. One of the latest challenges in this area is the compressor wheels used in turbochargers, which has a speed up to 300,000 rpm and have typically been made of aluminum alloy for decades, to achieve the lowest possible rotor inertia. However, while in the past this component was only encountered with filtered air, nowadays, due to developments in compliance with tightening emission standards, various fluids also collide with the spinning blades, which can cause mechanical damage.
Journal Article

Economic Competitiveness of Battery Electric Vehicles vs Internal Combustion Engine Vehicles in India: A Case Study for Two- and Four-Wheelers

2024-04-04
The initial cost of battery electric vehicles (BEVs) is higher than internal combustion engine-powered vehicles (ICEVs) due to expensive batteries. Various factors affect the total cost of ownership of a vehicle. In India, consumers are concerned with a vehicle’s initial purchase cost and prefer owning an economical vehicle. The higher cost and shorter range of BEVs compared to ICEVs severely limit their penetration in the Indian market. However, government subsidies and incentives support BEVs. The total cost of ownership assessment is used to evaluate the entire cost of a vehicle to find the most economical option among different powertrains. This study compares 2W (two-wheeler) and 4W (four-wheeler) BEV’s cost vis-à-vis equivalent ICEVs in Delhi and Mumbai. The cost analysis assesses the current and future government policies to promote BEVs. Two assumed policies were applied to estimate future scenarios.
Journal Article

Modeling Approach for Hybrid Integration of Renewable Energy Sources with Vehicle-to-Grid Technology

2024-03-29
Abstract This article presents a technical study on the integration of hybrid renewable energy sources (RES) with vehicle-to-grid (V2G) technology, aiming to enhance energy efficiency, grid stability, and mitigating power imbalances. The growing adoption of RES and electric vehicles (EV) necessitates innovative solutions to mitigate intermittency and optimize resource utilization. The study’s primary objective is to design and analyze a hybrid distribution generation system encompassing solar photovoltaic (PV) and wind power stations, along with a conventional diesel generator, connected to the utility grid. A V2G system is strategically embedded within the microgrid to facilitate bidirectional power exchange between EV and the grid. Methodologically, MATLAB/Simulink® 2021a is employed to simulate the system’s performance over one day.
Journal Article

State of Charge Balancing Control for Multiple Output Dynamically Adjustable Capacity System

2024-03-28
Abstract A multiple output dynamically adjustable capacity system (MODACS) is developed to provide multiple voltage output levels while supporting varying power loads by switching multiple battery strings between serial and parallel connections. Each module of the system can service either a low voltage bus by placing its strings in parallel or a high voltage bus with its strings in series. Since MODACS contains several such modules, it can produce multiple voltages simultaneously. By switching which strings and modules service the different output rails and by varying the connection strategy over time, the system can balance the states of charge (SOC) of the strings and modules. A model predictive control (MPC) algorithm is formulated to accomplish this balancing. MODACS operates in various power modes, each of which imposes unique constraints on switching between configurations.
Journal Article

Fire Safety of Battery Electric Vehicles: Hazard Identification, Detection, and Mitigation

2024-03-21
Abstract Battery electric vehicles (EVs) bring significant benefits in reducing the carbon footprint of fossil fuels and new opportunities for adopting renewable energy. Because of their high-energy density and long cycle life, lithium-ion batteries (LIBs) are dominating the battery market, and the consumer demand for LIB-powered EVs is expected to continue to boom in the next decade. However, the chemistry used in LIBs is still vulnerable to experiencing thermal runaway, especially in harsh working conditions. Furthermore, as LIB technology moves to larger scales of power and energy, the safety issues turn out to be the most intolerable pain point of its application in EVs. Its failure could result in the release of toxic gases, fire, and even explosions, causing catastrophic damage to life and property. Vehicle fires are an often-overlooked part of the fire problem. Fire protection and EV safety fall into different disciplines.
Journal Article

Employing a Model of Computation for Testing and Verifying the Security of Connected and Autonomous Vehicles

2024-03-05
Abstract Testing and verifying the security of connected and autonomous vehicles (CAVs) under cyber-physical attacks is a critical challenge for ensuring their safety and reliability. Proposed in this article is a novel testing framework based on a model of computation that generates scenarios and attacks in a closed-loop manner, while measuring the safety of the unit under testing (UUT), using a verification vector. The framework was applied for testing the performance of two cooperative adaptive cruise control (CACC) controllers under false data injection (FDI) attacks. Serving as the baseline controller is one of a traditional design, while the proposed controller uses a resilient design that combines a model and learning-based algorithm to detect and mitigate FDI attacks in real-time.
Journal Article

Effect of Turbine Speed Parameter on Exhaust Pulse Energy Matching of an Asymmetric Twin-Scroll Turbocharged Heavy-Duty Engine

2024-03-04
Abstract The two-branch exhaust of an asymmetric twin-scroll turbocharged engine are asymmetrically and periodically complicated, which has great impact on turbine matching. In this article, a matching effect of turbine speed parameter on asymmetric twin-scroll turbines based on the exhaust pulse energy weight distribution of a heavy-duty diesel engine was introduced. First, it was built as an asymmetric twin-scroll turbine matching based on exhaust pulse energy distribution. Then, by comparing the average matching point and energy matching points on the corresponding turbine performance map, it is revealed that the turbine speed parameter of energy matching points was a significant deviation from the turbine speed parameter under peak efficiency, which leads to the actual turbine operating efficiency lower than the optimal state.
Journal Article

Influence of Exhaust Aftertreatment System on Powertrain Vibration Behavior

2024-03-01
Abstract NVH refinement of commercial vehicles is the key attribute for customer acceptance. Engine and road irregularities are the two major factors responsible for the same. During powertrain isolators’ design alone, the mass and inertia of the powertrain are usually considered, but in practical scenarios, a directly coupled subsystem also disturbs the boundary conditions for design. Due to the upgradation in emission norms, the exhaust aftertreatment system of modern automotive vehicles becomes heavier and more complex. This system is further coupled to the powertrain through a flexible joint or fixed joint, which results in the disturbance of the performance of the isolators. Therefore, to address this, the isolators design study is done by considering a multi-body dynamics model of vehicles with 16 DOF and 22 DOF problems, which is capable to simulate static and dynamic real-life events of vehicles.
Journal Article

Demonstration of 2027 Emissions Standards Compliance Using Heavy-Duty Gasoline Compression Ignition with P1 Hybridization

2024-02-19
Abstract Heavy-duty on-road engines are expected to conform to an ultralow NOx (ULNOx) standard of 0.027 g/kWh over the composite US heavy-duty transient federal test procedure (HD-FTP) cycle by 2031, a 90% reduction compared to 2010 emissions standards. Additionally, these engines are expected to conform to Phase 2 greenhouse gas regulations, which require tailpipe CO2 emissions under 579 g/kWh. This study experimentally demonstrates the ability of high fuel stratification gasoline compression ignition (HFS-GCI) to satisfy these emissions standards. Steady-state and transient tests are conducted on a prototype multi-cylinder heavy-duty GCI engine based on a 2010-compliant Cummins ISX15 diesel engine with a urea-SCR aftertreatment system (ATS). Steady-state calibration exercises are undertaken to develop highly fuel-efficient GCI calibration maps at both cold-start and warmed up conditions.
Journal Article

Safety Concepts for Future Electromechanical Brake Actuators

2024-02-16
Abstract A growing interest in electromechanical brakes (EMB) is discernible in the automotive industry finding its climax in an announcement of EMB series production in late 2022 [1]. The introduction of EMB allows for new design opportunities using distributed software on smart actuators. However, additional efforts are needed to ensure continuously high levels of safety even when established design principles in the brake system are changed. This article discusses different safety concepts that could potentially be put in place in EMB actuators. Therefore, safety goals that need to be satisfied by an actuator are derived. Furthermore, three different degrees of complexity are differentiated, evolving to different required electronic control units (ECU) and architectures. Additionally, also the safety of the actuation unit (AU) is considered to realize a holistic safety concept for the actuator. Finally, a conclusion is drawn comparing the different investigated concepts.
Journal Article

Forensic Analysis of Lithium-Ion Cells Involved in Fires

2024-02-14
Abstract The emerging use of rechargeable batteries in electric and hybrid electric vehicles and distributed energy systems, and accidental fires involving batteries, has heightened the need for a methodology to determine the root cause of the fire. When a fire involving batteries takes place, investigators and engineers need to ascertain the role of batteries in that fire. Just as with fire in general, investigators need a framework for determining the role that is systematic, reliant on collection and careful analysis of forensic evidence, and based on the scientific method of inquiry. This article presents a systematic scientific process to analyze batteries that have been involved in a fire. It involves examining Li-ion cells of varying construction, using a systematic process that includes visual inspection, x-ray, CT scan, and possibly elemental analysis and testing of exemplars.
Journal Article

TOC

2024-02-12
Abstract TOC
Journal Article

A Novel Approach to Light Detection and Ranging Sensor Placement for Autonomous Driving Vehicles Using Deep Deterministic Policy Gradient Algorithm

2024-01-31
Abstract This article presents a novel approach to optimize the placement of light detection and ranging (LiDAR) sensors in autonomous driving vehicles using machine learning. As autonomous driving technology advances, LiDAR sensors play a crucial role in providing accurate collision data for environmental perception. The proposed method employs the deep deterministic policy gradient (DDPG) algorithm, which takes the vehicle’s surface geometry as input and generates optimized 3D sensor positions with predicted high visibility. Through extensive experiments on various vehicle shapes and a rectangular cuboid, the effectiveness and adaptability of the proposed method are demonstrated. Importantly, the trained network can efficiently evaluate new vehicle shapes without the need for re-optimization, representing a significant improvement over classical methods such as genetic algorithms.
Journal Article

Experimental Assessment of Different Air-Based Battery Thermal Management System for Lithium-Ion Battery Pack

2024-01-25
Abstract Lithium-ion (LI) batteries are widely used to power electric vehicles (EVs), owing to their high charge density, to minimize the environmental pollution caused by fossil fuel-based engines. It experiences an enormous amount of heat generation during charging and discharging cycles, which results in higher operating temperatures and thermal nonuniformity. This affects performance, useful battery life, and operating costs. This can be mitigated by an effective battery thermal management system (BTMS) to dissipate the heat there by safeguarding the battery from adverse thermal effects and ensuring high performance, safety, and longevity of the battery.
X