Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Assessing the Total Vehicle Impact of Alternative Body Technologies

2002-07-09
2002-01-2069
This paper will explore the extended impact of advanced body technologies in two ways; laterally, by potentially reducing the requirements of other vehicle systems and horizontally, in terms of the life cycle costs of operation. Variants of Steel, Aluminum, and polymer composite designs will be explored. Traditional cost model projections of direct manufacturing costs and mass will be compared with the impact of functional system interrelationships and vehicle performance in order to assess the total vehicle costs and benefits of alternative systems. This analytical approach can give material suppliers and automakers a framework for understanding the various cost tradeoffs in the use of alternative material systems for automotive bodies-in-white, in terms of total cost, mass, and fuel economy. Through this understanding, better decisions about how best to invest development resources can be made.
Technical Paper

Not the Delorean Revisited: An Assessment of the Competitive Position of a Stainless Steel Body-in-White

1999-09-28
1999-01-3239
Autokinetics is a Rochester Hills MI design firm working with Armco, a supplier of stainless steel. Together, they have developed an architecture that replaces the traditional stamped and spot welded steel unibody with a novel stainless steel spaceframe architecture. Fabrication Rollformings Thin wall castings Progressive die stampings Plastic support and exterior panels Assembly - Spot, laser, and MIG welding Relative to conventional steel unibodies, the Autokinetics spaceframe architecture offers a number of projected advantages. Substantial mass reduction Increased safety Improved ride and NVH More flexible packaging Lower lifecycle impact Potential for paint shop elimination The obvious question that arises, and the one that this paper will answer, is: How does the Autokinetics spaceframe architecture compete on cost?
Technical Paper

Evaluation of Tailor Welded Blanks Through Technical Cost Modeling

1998-02-23
980446
In the past decade, the demand for and development of tailor-welded blanks (TWBs) has increased dramatically. TWBs help reduce body mass, piece count and assembly costs, while potentially reducing overall cost. IBIS Associates, Inc. has performed a cost analysis of tailor welded blank manufacturing through the use of Technical Cost Modeling (TCM), a methodology used to simulate fabrication and assembly processes. IBIS has chosen the automobile door inner panel for comparison of TWBs and conventionally stamped door inners with added reinforcements. Manufacturing costs are broken down by operation for variable costs (material, direct labor, utility), and fixed costs (equipment, tooling, building, overhead labor, maintenance, and cost of capital). Analyses yield information valuable to process selection by comparing cost as a function of manufacturing method, process yield, production volume, and process rate.
Technical Paper

The Steel Unibody: The Application of Cost Analysis to Determine Cost Reduction Strategies

1998-02-01
981004
Despite repeated challenges from alternative materials and processes, the stamped and spot welded steel unibody remains the near-unanimous choice of automakers for vehicle body-in-white (BIW) structures and exterior panels in volume production. Conventional steel's only weakness is mass; aluminum and polymer composites offer the potential for considerable mass savings, but generally at a higher cost. Efforts within the automakers as well as by outside organizations such as the international steel industry's Ultra Light Steel Auto Body (ULSAB) program are underway to improve the steel uni-body's mass and cost position. To reduce cost, it is first necessary to identify cost. The measurement of cost for a complex system such as an automobile BIW is far from a trivial task. This paper presents an analytical approach to understanding the manufacturing cost for a conventional steel unibody. The results of this cost analysis are then used to outline a strategy for future cost reduction.
X