Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Development of the Static Phase Separator

2008-06-29
2008-01-2041
During Lunar missions, NASA's new Orion Crew Exploration Vehicle (CEV) may benefit from mass savings and increased reliability by the use of a passive, capillary-driven Static Phase Separator (SPS) for urine collection, containment, and disposal in place of a rotary-fan separator and wastewater storage tank. The design of a capillary separator addresses unique challenges for microgravity fluid management for liquids with a wide range of possible contact angles and high air-to-liquid flow ratio. This paper presents the iterative process leading to a successful test in a reduced gravity aircraft of the SPS concept. Using appropriately scaled test conditions, the resulting prototype allows for a range of wetting properties with complete separation of liquid from gas.
Technical Paper

Testing of an Amine-Based Pressure-Swing System for Carbon Dioxide and Humidity Control

2007-07-09
2007-01-3156
In a crewed spacecraft environment, atmospheric carbon dioxide (CO2) and moisture control are crucial. Hamilton Sundstrand has developed a stable and efficient amine-based CO2 and water vapor sorbent, SA9T, that is well suited for use in a spacecraft environment. The sorbent is efficiently packaged in pressure-swing regenerable beds that are thermally linked to improve removal efficiency and minimize vehicle thermal loads. Flows are all controlled with a single spool valve. This technology has been baselined for the new Orion spacecraft. However, more data was needed on the operational characteristics of the package in a simulated spacecraft environment. A unit was therefore tested with simulated metabolic loads in a closed chamber at Johnson Space Center during the last third of 2006. Tests were run at a variety of cabin temperatures and with a range of operating conditions varying cycle time, vacuum pressure, air flow rate, and crew activity levels.
Technical Paper

The Design and Testing of a Fully Redundant Regenerative CO2 Removal System (RCRS) for the Shuttle Orbiter

2001-07-09
2001-01-2420
Research into increased capacity solid amine sorbents has found a candidate (SA9T) that will provide enough increase in cyclic carbon dioxide removal capacity to produce a fully redundant Regenerative Carbon Dioxide Removal System (RCRS). This system will eliminate the need for large quantities of backup LiOH, thus gaining critical storage space on board the shuttle orbiter. This new sorbent has shown an ability to package two fully redundant (four) sorbent beds together with their respective valves, fans and plumbing to create two operationally independent systems. The increase in CO2 removal capacity of the new sorbent will allow these two systems to fit within the envelope presently used by the RCRS. This paper reports on the sub-scale amine testing performed in support of the development effort. In addition, this paper will provide a preliminary design schematic of a fully redundant RCRS.
Technical Paper

Development of a Solid Chlorate Backup Oxygen Delivery System for the International Space Station

2000-07-10
2000-01-2348
The International Space Station (ISS) Program requires that there always be a 45 calendar day contingency supply of breathing oxygen. In the early assembly stages, there is only one flight system, the Russian Solid Fuel Oxygen Generator (SFOG), which can meet that requirement. To better ensure the contingency oxygen supply, the Crew and Thermal Systems Division was directed to develop a flight hardware system that can meet all contingency oxygen requirements for ISS. Such a system, called the Backup Oxygen Candle System (BOCS), has been built and tested. The BOCS consists of 33 chlorate candles, a thermal containment apparatus, support equipment and packaging. The thermal containment apparatus utilizes the O2 produced by the candle as the motive stream in an ejector to passively cool the candle during operation.
X