Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Analysis of human driving behavior with focus on vehicle lateral control

2024-07-02
2024-01-2997
The optimization and further development of automated driving functions offers great potential to relieve the driver in various driving situations and increase road safety. Simulative testing in particular is an indispensable tool in this process, allowing conclusions to be drawn about the design of automated driving functions at a very early stage of development. In this context, the use of driving simulators provides support so that the driving functions of tomorrow can be experienced in a very safe and reproducible environment. The focus of the acceptance and optimization of automated driving functions is particularly on vehicle lateral control functions. As part of this paper, a test person study was carried out regarding manual vehicle lateral control on the dynamic vehicle road simulator at the Institute of Automotive Engineering.
Technical Paper

Investigation of Stator Cooling Concepts of an Electric Machine for Maximization of Continuous Power

2024-07-02
2024-01-3014
With the automotive industry's increasing focus on electromobility and the growing share of electric cars, new challenges are arising for the development of electric motors. The requirements for torque and power of traction motors are constantly growing, while installation space, costs and weight are increasingly becoming limiting factors. Moreover, there is an inherent conflict in the design between power density and efficiency of an electric motor. Thus, a main focus in today's development lies on space-saving and yet effective and innovative cooling systems. This paper presents an approach for a multi-physical optimization that combines the domains of electromagnetics and thermodynamics. Based on a reference machine, this simulative study examins a total of nine different stator cooling concepts varying the cooling duct positions and end-winding cooling concepts.
Technical Paper

Neural Network Modeling of Black Box Controls for Internal Combustion Engine Calibration

2024-07-02
2024-01-2995
The calibration of Engine Control Units (ECUs) for road vehicles is challenged by stringent legal and environmental regulations, coupled with short development cycles. The growing number of vehicle variants, although sharing similar engines and control algorithms, requires different calibrations. Additionally, modern engines feature increasingly number of adjustment variables, along with complex parallel and nested conditions within the software, demanding a significant amount of measurement data during development. The current state-of-the-art (White Box) model-based ECU calibration proves effective but involves considerable effort for model construction and validation. This is often hindered by limited function documentation, available measurements, and hardware representation capabilities. This article introduces a model-based calibration approach using Neural Networks (Black Box) for two distinct ECU functional structures with minimal software documentation.
Technical Paper

Harmonic injection method for NVH optimization of permanent magnet synchronous motors considering the structural characteristics of the machine

2024-07-02
2024-01-3015
Noise, vibration and harshness (NVH) is one of the most important performance evaluation aspect of electric motors. Among the different causes of the NVH issues of electrical drives, the high-frequency spatial and temporal harmonics of the electrical drive system is of great importance. To reduce the tonal noise of the electric motors, harmonic injection methods can be applied. However, a lot of the existing related work focuses more on improving the optimization process of the parameter settings of the injected current/flux/voltage, which are usually limited to some specific working conditions. The applicability and effectivity of the algorithm to the whole frequency/speed range are not investigated. In this paper, a multi-domain pipeline of harmonic injection controller design for a permanent magnet synchronous motor (PMSM) is proposed.
Technical Paper

Efficient engine encapsulation strategy using poroelastic finite element simulation

2024-06-12
2024-01-2957
With the increasing importance of electrified powertrains, electric motors and gear boxes become an important NVH source especially regarding whining noises in the high frequency range. Engine encapsulation noise treatments become often necessary and present some implementation, modeling as well as optimization issues due to complex environments with contact uncertainties, pass-throughs and critical uncovered areas. Relying purely on mass spring systems is often a too massive and relatively unefficient solution whenever the uncovered areas are dominant. Coverage is key and often a combination of hybrid backfoamed porous stiff shells with integral foams for highly complex shapes offer an optimized trade-off between acoustic performance, weight and costs.
Technical Paper

Bushing Stiffness Optimization Method for NVH Improvement Using Blocked Force and Energy-Based Index in Suspension System

2024-06-12
2024-01-2921
Reductions in powertrain noise have led to an increased proportion of road noise, prompting various studies aimed at mitigating it. Road excitation primarily traverses through the vehicle suspension system, necessitating careful optimization of the characteristics of bushings at connection points. However, optimizing at the vehicle assembly stage is both time-consuming and costly. Therefore, it is essential to proceed with optimization at the subsystem level using appropriate objective functions. In this study, the blocked force and energy-based index derived from complex power were used to optimize the NVH performance. Calculating the complex power in each bushing enables computing the power flow, thereby providing a basis for evaluating the NVH performance. Through stiffness injection, the frequency response functions (FRF) of the system can be predicted according to arbitrary changes in the bushing stiffness.
Technical Paper

Analysis of the Mechanism by Which Spline Pitch Errors Affect Powertrain Vibration

2024-06-12
2024-01-2910
As environmental concerns have taken the spotlight, electrified powertrains are rapidly being integrated into vehicles across various brands, boosting their market share. With the increasing adoption of electric vehicles, market demands are growing, and competition is intensifying. This trend has led to stricter standards for noise and vibration as well. To meet these requirements, it is necessary to not only address the inherent noise and vibration sources in electric powertrains, primarily from motors and gearboxes, but also to analyze the impact of the spline power transmission structure on system vibration and noise. Especially crucial is the consideration of manufacturing discrepancies, such as pitch errors in splines, which various studies have highlighted as contributors to noise and vibration in electric powertrains. This paper focuses on comparing and analyzing the influence of spline pitch errors on two layout configurations of motor and gearbox spline coupling structures.
Technical Paper

Metrics based design of electromechanical coupled reduced order model of an electric powertrain for NVH assessment

2024-06-12
2024-01-2913
Electric vehicles offer cleaner transportation with lower emissions, thus their increased popularity. Although, electric powertrains contribute to quieter vehicles, the shift from internal combustion engines to electric powertrains presents new Noise, Vibration, and Harshness challenges. Unlike traditional engines, electric powertrains produce distinctive tonal noise, notably from motor whistles and gear whine. These tonal components have frequency content, sometimes above 10 kHz. Furthermore, the housing of the powertrain is the interface between the excitation from the driveline via the bearings and the radiated noise (NVH). Acoustic features of the radiated noise can be predicted by utilising the transmitted forces from the bearings. Due to tonal components at higher frequencies and dense modal content, full flexible multibody dynamics simulations are computationally expensive.
Technical Paper

A Study on RANC Technique for Server-based Control Filter Optimization

2024-06-12
2024-01-2960
Broadband active noise control algorithms require high-performance so multi-channel control to ensure high performance, which results in very high computational power and expensive DSP. When the control filter update part need a huge computational power of the algorithm is separated and calculated by the server, it is possible to reduce cost by using a low-cost DSP in a local vehicle, and a performance improvement algorithm requiring a high computational power can be applied to the server. In order to achieve the above goal, this study analyzed the maximum delay time when communication speed is low and studied response measures to ensure data integrity at the receiving location considering situations where communication speed delay and data errors occur.
Technical Paper

AI-Based Optimization Method of Motor Design Parameters for Enhanced NVH Performance in Electric Vehicles

2024-06-12
2024-01-2927
The high-frequency whining noise produced by motors in modern electric vehicles causes a significant issue, leading to annoyance among passengers. This noise becomes even more noticeable due to the quiet nature of electric vehicles, which lack other noises to mask the high-frequency whining noise. To improve the noise caused by motors, it is essential to optimize various motor design parameters. However, this task requires expert knowledge and a considerable time investment. In this study, we explored the application of artificial intelligence to optimize the NVH performance of motors during the design phase. Firstly, we selected and modeled three benchmark motor types using Motor-CAD. Machine learning models were trained using Design of Experiment methods to simulate batch runs of Motor-CAD inputs and outputs.
Technical Paper

Synergizing Efficiency and Silence: A Novel Approach to E-Machine Development

2024-06-12
2024-01-2914
Traditionally, Electric Machine design has primarily focused on factors like efficiency, packaging, and cost, often neglecting the critical aspects of Noise, Vibration, and Harshness (NVH) in the early decision-making stages. This disconnect between E-Machine design teams and NVH teams has consistently posed a challenge. This paper introduces an innovative workflow that unifies these previously separate domains, facilitating comprehensive optimization by seamlessly integrating NVH considerations with other E-Machine objectives, such as electromagnetic compatibility (EMC). This paper highlights AVL's approach in achieving this transformation and demonstrates how this integrated approach sets a new standard for E-Machine design. The presented approach relies on AI-driven algorithms and computational tools.
Technical Paper

Acoustic VS reliability. Case study of automotive components undergoing vibration endurance tests

2024-06-12
2024-01-2948
During design development phases, automotive components undergo a strict validation process aiming to demonstrate requested levels of performance and durability. In some cases, specific developments encounter a major blocking point : decoupling systems responsible for optimal acoustic performances. On the one hand, damping rubbers need to be soft to comply with noise, vibration & harshness criteria. However, softness would provoke such high amplitudes during vibration endurance tests that components would suffer from failures. On the other hand, stiffer rubbers, designed for durability purposes, would fail to meet noise compliance. The rubber design development goes through a double-faced dilemma : design with acceptable trade-off between NVH and durability, and efficient ways to develop compliant designs. This paper illustrates two case studies where different methodologies are applied to validate decoupling systems from both acoustic and reliability perspectives.
Technical Paper

Application of a Seat Transmissibility Approach to Experience Measured or Predicted Seat-rail Vibration in a Multi-Attribute Simulator

2024-06-12
2024-01-2962
Computer modelling, virtual prototyping and simulation is widely used in the automotive industry to optimize the development process. While the use of CAE is widespread, on its own it lacks the ability to provide observable acoustics or tactile vibrations for decision makers to assess, and hence optimize the customer experience. Subjective assessment using Driver-in-Loop simulators to experience data has been shown to improve the quality of vehicles and reduce development time and uncertainty. Efficient development processes require a seamless interface from detailed CAE simulation to subjective evaluations suitable for high level decision makers. In the context of perceived vehicle vibration, the need for a bridge between complex CAE data and realistic subjective evaluation of tactile response is most compelling. A suite of VI-grade noise and vibration simulators have been developed to meet this challenge.
Technical Paper

Static Aeroelastic Analysis and Study of Control Effectiveness of a Typical Reusable Launch Vehicle

2024-06-01
2024-26-0447
Launch vehicles are vulnerable to aeroelastic effects due to their lightweight, flexible, and higher aerodynamic loads. Aeroelasticity research has therefore become an inevitable concern in the development of the Reusable Launch Vehicle (RLV). RLV is the space analogy of an aircraft, a unanimous solution to achieve more affordable access to space. The lightweight control surface of the RLV signifies the relevance of the study on control effectiveness. It is the capability of a control surface such as an elevon or rudder to produce aerodynamic forces and moments to change the launch vehicle's orientation and maneuver it along the intended flight path. The static aeroelastic problem determines the efficiency of control, aircraft trim behaviour, static stability, and maneuvering quality in steady flight conditions. In this study, static aeroelastic analysis was performed on a typical RLV using MSC/NASTRAN inbuilt aerodynamics.
Technical Paper

Numerical Investigation of the Aerodynamic Characteristics of a Missile Geometry at Mach 4

2024-06-01
2024-26-0443
The aim of this paper is to present a numerical analysis of high-speed flows over a missile geometry. The N1G missile has been selected for our study, which is subjected to a high-speed flow at Mach 4 over a range of Angle of attack (AoA) from 0° to 6°. The analysis has been conducted for a 3-dimensional missile model using ANSYS environment. The study contemplates to provide new insights into the missile aerodynamic performance which includes the coefficient of lift (CL) , coefficient of drag (CD) and coefficient of moment (CM) using computational fluid dynamics (CFD). As there is a lack of availability of data for missile geometry, such as free stream conditions and/or the experimental data for a given Mach number, this paper intends to provide a detailed analysis at Mach 4. As the technology is advancing, there is a need for high-speed weapons (missiles) with a good aerodynamic performance, which intern will benefit in reduction of fuel consumption.
Technical Paper

Design and Manufacturing of an Inclinometer Sensing Element for Launch Vehicle Applications

2024-06-01
2024-26-0419
Design and Manufacturing of an Inclinometer sensing element for launch vehicle applications Tony M Shaju, Nirmal Krishna, G Nagamalleswara Rao, Pradeep K Scientist/Engineer, ISRO Inertial Systems Unit, Vattiyoorkavu, Trivandrum, India - 695013 Indian Space Research Organisation (ISRO) uses indigenously developed launch vehicles like PSLV, GSLV, LVM3 and SSLV for placing remote sensing and communication satellites along with spacecrafts for other important scientific applications into earth bound orbits. Navigation systems present in the launch vehicle play a pivotal role in achieving the intended orbits for these spacecrafts. During the assembly of these navigation packages on the launch vehicle, it is required to measure the initial tilt of the navigation sensors for any misalignment corrections, which is given as input to the navigation software. A high precision inclinometer is required to measure these tilts with a resolution of 1 arc-second.
Technical Paper

Structural Loads for Crew Escape System (CES) of Gaganyaan Launch Vehicle During Abort

2024-06-01
2024-26-0453
Abstract : In any human space flight program, safety of the crew is of utmost priority. In case of exigency during atmospheric flight, the crew is safely and quickly rescued from the launch vehicle using Crew escape system. Crew escape system is a crucial part of the Human Space flight vehicle which carries the crew module away from the ascending launch vehicle by firing its rocket motors (Pitch Motor (PM), Low altitude Escape Motor (LEM) and High altitude Escape Motor (HEM)). The structural loads experienced by the crew escape system during the mission abort are severe as the propulsive forces, aerodynamic forces and inertial forces on the vehicle are significantly high. Since the mission abort can occur at anytime during the ascent phase of the launch vehicle, trajectory profiles are generated for abort at every one second interval of ascent flight time considering several combinations of dispersions on various propulsive parameters of abort motors and aero parameters.
Technical Paper

Dynamic Ascent Loads Estimation of Winged Reusable Launch Vehicle: Formulation, Analysis and Post Flight Studies

2024-06-01
2024-26-0452
A structural load estimating methodology was developed for the RLV-TD HEX-01 mission, the maiden winged body technology demonstrator vehicle of ISRO. The technique characterizes atmospheric regime of flight from vehicle loads perspective and ensures adequate structural margin considering atmospheric variations and system level perturbations. Primarily the method evaluates time history of station loads considering effects of vehicle dynamics and structural flexibility. Station loads in the primary structure are determined by superposition of quasi-static aerodynamic loads, dynamic inertia loads, control surface loads and propulsion system loads based on actual physics of the system. Spatial aerodynamic distributions at various Mach numbers along the trajectory have been used in the study. Argumentation in aerodynamic loads due to vehicle flexibility is assessed through the use of spatial aerodynamic distributions.
Technical Paper

Analysis for Effect of Angle of Attack on Coefficient of Lift of Wing Structure

2024-06-01
2024-26-0450
Dimensional optimization has always been a time consuming process, especially for aerodynamic bodies, requiring much tuning of dimensions and testing for each sample. Aerodynamic auxiliaries, especially wings, are design dependent on the primary model attached, as they influence the amount of lift or reduction in drag which is beneficial to the model. In this study CFD analysis is performed to obtain pressure counter of wings. For a wing, the angle of attack is essential in creating proper splits to incoming winds, even under high velocities with larger distances from the separation point. In the case of a group of wings, each wing is then mentioned as a wing element, and each wing is strategically positioned behind the previous wing in terms of its vertical height and its self-angle of attack to create maximum lift. At the same time, its drag remains variable to its shape ultimately maximizing the C L /C D ratio.
Technical Paper

Enhancing Sustainable Aviation through Contrail Management – A Framework for Multiple Platforms

2024-06-01
2024-26-0444
Effective contrail management while ensuring operational and economic efficiencies for flight services is essential for providing services with minimal adverse environmental impact. The paper explores various aspects of contrail management applicable to different platforms such as Unmanned vehicles, Commercial airliners and Business & regional jets. The aspects unique to each platform such as flight levels of operation, fuel types, flight endurance and radius of operation have been analyzed. Expanse of 5G network is resulting in increased flight activity at flight levels not envisaged hitherto. The paper also dwells on the ramifications of the increased proliferation of different platforms at newer flight levels from the perspective of contrail management.
X