Refine Your Search

Topic

Search Results

Standard

Procedures for the Calculation of Airplane Fuel Consumption

2022-09-30
CURRENT
AIR6183
This SAE Aerospace Information Report (AIR) describes procedures for calculating fuel consumption for civil jet airplanes through all modes of operation for all segments of a flight. Turboprop and piston airplanes, as well as helicopters or unconventional aircraft, are not included in this AIR. The principle purpose of these procedures is to assist model developers in calculating airplane fuel consumption in a consistent and accurate manner that can be used to address various environmental assessments including those related to policy decisions and regulatory requirements. This AIR is intended to directly support the emission calculations documented in AIR5715. The models described in this AIR are intended to be used from the start of the takeoff roll to the end of the ground roll; taxi fuel consumption models are not included. If modelers have access to higher fidelity methods, they should use those methods in lieu of the ones in this AIR.
Standard

Application of Pure-Tone Atmospheric Absorption Losses to One-Third Octave-Band Data

2021-01-05
CURRENT
ARP5534
This document presents a practical method for calculating atmospheric absorption for wide-band sounds analyzed with one-third octave-band filters, called the SAE Method. The SAE Method utilizes pure-tone attenuation algorithms originally published in ISO 9613-1 and ANSI S1.26-1995 to calculate path-length attenuation at mid-band frequencies. The equations introduced in this standard transform the pure-tone, mid-band attenuation to one-third octave-band attenuation. The purpose of this guidance document is to extend the useful attenuation range of the Approximate Method outlined in ANSI S1.26-1995, and to replace ARP866A. Calculation of sound attenuation caused by mechanisms other than atmospheric absorption such as divergence, refraction, scattering due to turbulence, ground reflections, or non-linear propagation effects, is outside the scope of this document.
Standard

Gas Turbine Jet Exhaust Noise Prediction

2021-01-05
CURRENT
ARP876F
ARP876 is intended to provide specific recommended procedures for the prediction of gas turbine jet exhaust system noise sources. Procedures are issued as separate sections, to allow for future updating as additional methods, consistent with state-of-the-art, become available.
Standard

Measurement of Far Field Noise from Gas Turbine Engines During Static Operation

2020-12-21
CURRENT
ARP1846B
Recommendations presented in this document are intended primarily for the acquisition of far-field noise data. The test engine is to be appropriately configured and operated so that the sound pressure levels obtained are consistent with the specific objectives of the test. The principal output of the data reduction system is one-third octave band sound pressure levels. However, when appropriate, data may be recorded for purposes of broader or narrower bandwidth analysis.
Standard

Ground-Plane Microphone Configuration for Propeller-Driven Light-Aircraft Noise Measurement

2020-12-21
CURRENT
ARP4055A
The scope of this ARP embraces the description of a configuration for a ground-plane microphone installation that may be used to determine sound pressure levels equivalent to those which would have been measured in an acoustic freefield at the microphone location. The one-third - octave-band center-frequency range over which equivalent freefield sound pressure levels may be obtained is from as low as 50 Hz to at least as high as 10,000 Hz. The specific application of the measurement technique described in this ARP is the determination of the equivalent freefield sound pressure levels of the noise produced by propeller-driven light aircraft, in flight, for sound incidence angles within 30 degrees of the normal to the ground. For larger angles to the normal, additional adjustments may be necessary which are outside the scope of this ARP.
Standard

Method for Predicting Lateral Attenuation of Airplane Noise

2019-10-04
CURRENT
AIR5662
This document describes analytical methods for calculating the attenuation of the level of the sound propagating from an airplane to locations on the ground and to the side of the flight path of an airplane during ground roll, climbout after liftoff, and landing operations. Both level and non-level ground scenarios may be modeled using these methods, however application is only directly applicable to terrain without significant undulations, which may cause multiple reflections and/or multiple shielding effects. This attenuation is termed lateral attenuation and is in excess of the attenuation from wave divergence and atmospheric absorption.
Standard

Gas Turbine Jet Exhaust Noise Prediction

2012-07-12
HISTORICAL
ARP876E
ARP876 is intended to provide specific recommended procedures for the prediction of gas turbine jet exhaust system noise sources. Procedures are issued as separate Sections, to allow for future updating as additional methods, consistent with state-of-the-art, become available.
Standard

MEASUREMENT OF FAR FIELD NOISE FROM GAS TURBINE ENGINES DURING STATIC OPERATION

1995-09-19
HISTORICAL
ARP1846
Recommendations presented in this document are intended primarily for the acquisition of far-field acoustical data. The test engine is to be appropriately configured and operated so that the acoustical signals generated are consistent with the specific objectives of the test. The principal output of the data reduction system is one-third octave band sound pressure levels. However, broader or narrower bandwidth analysis of the recorded data may also be accomplished when appropriate. Although not specifically intended to apply to special purpose engine noise testing (for example, tests involving unique instrumentation or procedures to identify specific noise sources), some of the practices described herein may be appropriate for such testing. Specification of reference conditions is outside the scope of this document although procedures to adjust data to a reference condition are described in 7.2.4.
Standard

GAS TURBINE JET EXHAUST NOISE PREDICTION

1994-01-01
HISTORICAL
ARP876D
ARP876 is intended to provide specific recommended procedures for the prediction of gas turbine jet exhaust system noise sources. Procedures are issued as separate Sections, to allow for future updating as additional methods, consistent with state-of-the-art, become available.
X