Refine Your Search

Topic

Author

Search Results

Standard

test

2024-04-30
WIP
amstest
test
Standard

Aircraft Ground Deicing/Anti-Icing Processes

2024-04-29
WIP
AS6285F
This SAE Aerospace Standard (AS) establishes the minimum requirements for ground-based aircraft deicing/anti-icing methods and procedures to ensure the safe operation of aircraft during icing conditions on the ground. This document does not specify the requirements for particular aircraft models.NOTE: Refer to particular aircraft operator or aircraft manufacturer’s published manuals and procedures.The application of the procedures specified in this document are intended to effectively remove and/or prevent the accumulation of frost, snow, slush, or ice contamination which can seriously affect the aerodynamic performance and/or the controllability of an aircraft. The principal method of treatment employed is the use of fluids qualified to AMS1424 (Type I fluid) and AMS1428 (Type II, III, and IV fluids).All guidelines referred to herein are applicable only in conjunction with the applicable documents.
Standard

Aircraft Ground Support Equipment – General Requirements

2024-04-26
WIP
ARP1247F
This SAE Aerospace Recommended Practice (ARP) outlines the basic general design requirements for ground support equipment used in the civil air transport industry. It is intended to assist in standardizing requirements for various configurations of equipment. For procurement of equipment, sections of this document should be specified with due consideration of the functional and environmental requirements of the equipment, and to the relative cost of satisfying those requirements.
Standard

Titanium Alloy Bars, Forgings, and Flash-Welded Rings, 5Al - 2.5V - 4Sn - 1Co - 0.8Fe Annealed

2024-04-25
CURRENT
AMS6903
This specification covers a titanium alloy in the form of bars, forgings, and flash-welded rings up through 12.000 inches (304.80 mm), inclusive, in diameter or least distance between parallel sides, and stock of any size for forging or flash-welded rings. Bars, forgings, and flash-welded rings with a nominal thickness of 3.000 inches (79.20 mm) or greater shall have a maximum cross-sectional area of 113 square inches (729 cm2) (see 8.5).
Standard

Titanium Alloy Bars, Forgings and Forging Stock, 6.0Al - 6.0V - 2.0Sn, Solution Heat Treated and Aged

2024-04-25
CURRENT
AMS6935D
This specification covers a titanium alloy in the form of bars up through 4.000 inches (101.60 mm) in nominal diameter or least distance between parallel sides, inclusive, forgings of thickness up through 4.000 inches (101.60 mm), inclusive, with bars and forgings having a maximum cross-sectional area of 32 square inches (204.46 cm2), and stock for forging of any size (see 8.6).
Standard

Safety Assessment of Transport Airplanes in Commercial Service

2024-04-16
WIP
ARP5150B
This document describes guidelines, methods, and tools used to perform the ongoing safety assessment process for transport airplanes in commercial service (hereafter, termed “airplane”). The process described herein is intended to support an overall safety management program. It is associated with showing compliance with the regulations, and also with assuring a company that it meets its own internal standards. The methods identify a systematic means, but not the only means, to assess ongoing safety.While economic decision-making is an integral part of the safety management process, this document addresses only the ongoing safety assessment process. To put it succinctly, this document addresses the “Is it safe?” part of safety management; it does not address the “How much does it cost?” part of the safety management.This document also does not address any specific organizational structures for accomplishing the safety assessment process.
Standard

Safety Assessment of General Aviation Airplanes and Rotorcraft in Commercial Service

2024-04-16
WIP
ARP5151B
This document describes a process that may be used to perform the ongoing safety assessment for (1) GAR aircraft and components (hereafter, aircraft), and (2) commercial operators of GAR aircraft. The process described herein is intended to support an overall safety management program. It is to help a company establish and meet its own internal standards. The process described herein identifies a systematic means, but not the only means, to assess continuing airworthiness.Ongoing safety management is an activity dedicated to assuring that risk is identified and properly eliminated or controlled. The safety management process includes both safety assessment and economic decision-making. While economic decision-making (factors related to scheduling, parts, and cost) is an integral part of the safety management process, this document addresses only the ongoing safety assessment process.
Standard

Minimum Operational Performance Specification for Remote On-Ground Ice Detection Systems

2024-04-15
WIP
AS5681C
This SAE Aerospace Standard (AS)/Minimum Operational Performance Specification (MOPS) specifies the minimum performance requirements of Remote On-Ground Ice Detection Systems (ROGIDS). These systems are ground-based. They provide information that indicates whether frozen contamination is present on aircraft surfaces. Section 1 provides information required to understand the need for the ROGIDS, ROGIDS characteristics, and tests that are defined in subsequent sections. It describes typical ROGIDS applications and operational objectives and is the basis for the performance criteria stated in Section 3 through Section 5. Section 2 provides reference information, including related documents, abbreviations, and definitions. Section 3 contains general design requirements for the ROGIDS. Section 4 contains the Minimum Operational Performance Requirements for the ROGIDS, which define performance in icing conditions likely to be encountered during ground operations.
Standard

High Flow Liquid Hydrogen Fueling Couplings for Aerospace and Heavy Transport Applications

2024-04-15
WIP
AIR8999
The SAE AE-5CH Taskgroup has determined that high flow liquid hydrogen fueling couplings need to be developed in order to fast fill aircraft at the airport. Though the flow rates from a current liquid hydrogen bayonet connect may reach the lower bound flow rates of regional aircraft, there are some shortcomings to this connector for aerospace. For this reason a new specification for flow rates for regional to narrowbody (and potentially later widebody) are to be developed in this documenet. Harmonization for lower flow rates (such as up to 20kg/minute) are planned to be harmonized with ground vehicle fueling such as with ISO 13984. Within this document,coupling descriptions including Flow rates from 84 to 200 kg/minute will be evaluated (and potentially higher), and requirements and testing and safety targets will be specified.
Standard

Steel, Corrosion- and Heat-Resistant, Bars, Wire, Forgings, Mechanical Tubing, and Stock for Forging and Heading, 15Cr - 25.5Ni - 1.2Mo - 2.1Ti - 0.006B - 0.30V (Alloy A286), Consumable Electrode Remelted, 1650 °F (899 °C) Solution Heat Treated

2024-04-10
CURRENT
AMS5734L
This specification covers a corrosion- and heat-resistant steel in the form of bars, wire, forgings, mechanical tubing up to 5.00 inches (127 mm), inclusive, in nominal diameter or least distance between parallel sides (thickness), and stock for forging or heading.
X