Refine Your Search

Topic

Author

Search Results

Standard

Nuts, Self-Locking, UNS N07001 730 °C, 1100 MPa, and 1210 MPa Procurement Specification for, Metric

2024-05-09
CURRENT
MA1943C
This procurement specification covers aircraft quality self-locking nuts for wrenching (hex, spline) and anchor (plate, gang channel, shank) types of nuts made from a corrosion and heat-resistant nickel-base alloy of the type identified under the Unified Numbering System as UNS N07001. Tension height nuts having overall length of threaded portion not less than 1.2 times the nominal thread diameter have 1210 MPa minimum tensile strength at room temperature. Shear height nuts having shorter threaded portion have 1100 MPa minimum tensile strength at room temperature. Maximum test temperature of parts is 730 °C.
Standard

Polytetrafluoroethylene (PTFE) Moldings, Premium Grade, As Sintered

2024-05-08
WIP
AMS3668F
This specification covers two types of virgin, unfilled polytetrafluoroethylene (PTFE) in the form of molded rods, tubes, and shapes. This specification does not apply to product over 12 inches (305 mm) in length, rods under 0.750 inch (19.05 mm) in diameter, and tubes having wall thickness under 0.500 inch (12.70 mm).
Standard

Standard Four-Letter Coding as an Identification Method for Alternative Fuel Vehicles

2024-05-07
WIP
J3108/1
SAE J3108 RP provides fuel and hazard guidance for first and second responders of incidents associated with alternative fueled vehicles. The intent of this SAE J3108-1 RP is to remain with the limited number of seven intuitive and colored letters contained in each of the first two letter positions (72=49). However, the use of four letters plus nine digits (to not use either 0 or o) permits up to 1185921 unique identifiers (334) for future expansion. The RP is not intended to replace the standards for SAE J2990 format emergency response guide (ERG) created by automotive manufacturers for use at the scene of an emergency. Automotive OEMs are encouraged to reference this RP for industry design guidance when creating vehicle requirements and ERGs. This coding should be consistent with other vehicle badging with the goal of providing additional clarity.
Standard

Polytetrafluoroethylene (PTFE) Moldings, General Purpose Grade, As Sintered

2024-05-06
WIP
AMS3660F
This specification covers virgin, unfilled, polytetrafluoroethylene (PTFE) in the form of molded rods, tubes, and shapes. This specification does not apply to product over 12 inches (305 mm) in dimension parallel to the direction of applied molding pressure, rods under 0.750 inch (19.05 mm) in diameter, and tubes having wall thickness under 0.500 inch (12.70 mm).
Standard

Titanium Alloy Bars, Forgings and Forging Stock, 6.0Al - 6.0V - 2.0Sn, Solution Heat Treated and Aged

2024-04-25
CURRENT
AMS6935D
This specification covers a titanium alloy in the form of bars up through 4.000 inches (101.60 mm) in nominal diameter or least distance between parallel sides, inclusive, forgings of thickness up through 4.000 inches (101.60 mm), inclusive, with bars and forgings having a maximum cross-sectional area of 32 square inches (204.46 cm2), and stock for forging of any size (see 8.6).
Standard

Titanium Alloy Bars, Forgings, and Flash-Welded Rings, 5Al - 2.5V - 4Sn - 1Co - 0.8Fe Annealed

2024-04-25
CURRENT
AMS6903
This specification covers a titanium alloy in the form of bars, forgings, and flash-welded rings up through 12.000 inches (304.80 mm), inclusive, in diameter or least distance between parallel sides, and stock of any size for forging or flash-welded rings. Bars, forgings, and flash-welded rings with a nominal thickness of 3.000 inches (79.20 mm) or greater shall have a maximum cross-sectional area of 113 square inches (729 cm2) (see 8.5).
Standard

Liquid Leak Tightness Evaluation Methodology for EV Battery Packs Informational Report

2024-04-23
CURRENT
J3277_202404
This technical information report (IR) presents a methodology to evaluate battery pack liquid leak tightness attributes to be used in a production line to satisfy the functional requirement for IPX7, water ingress requirement, and no sustainable coolant leakage for coolant circuits. The Equivalent Channel Method is used as a suggested production leak tightness requirement for a given battery pack design that will correlate and assure that the battery pack meets or exceeds its functional requirement. Obtaining the specific geometry of the Equivalent Channel (EC) for a given battery pack is done analytically and empirically in consideration of the product design limitations. This document is a precursor to J3277-1, which will present the practices to qualify that product leak tightness is equal or better than the maximum allowed EC for that product using applicable and commercially available leak test technologies.
Standard

Electric Vehicle Power Transfer System Using Conductive Automated Connection Devices

2024-04-23
WIP
J3105
This document covers the general physical, electrical, functional, testing, and performance requirements for conductive power transfer, primarily for vehicles using a conductive ACD connection capable of transferring DC power. It defines conductive power transfer methods, including the infrastructure electrical contact interface, the vehicle connection interface, the electrical characteristics of the DC supply, and the communication system. It also covers the functional and dimensional requirements for the vehicle connection interface and supply equipment interface. New editions of the documents shall be backwards compatible with the older editions. There are also sub-documents which are identified by a SAE J3105/1, SAE J3105/2, and SAE J3105/3. These will be specific requirements for a specific interface defined in the sub-document.
X