Refine Your Search

Search Results

Viewing 1 to 7 of 7
Standard

Liquid Leak Tightness Evaluation Methodology for EV Battery Packs Informational Report

2024-04-23
CURRENT
J3277_202404
This technical information report (IR) presents a methodology to evaluate battery pack liquid leak tightness attributes to be used in a production line to satisfy the functional requirement for IPX7, water ingress requirement, and no sustainable coolant leakage for coolant circuits. The Equivalent Channel Method is used as a suggested production leak tightness requirement for a given battery pack design that will correlate and assure that the battery pack meets or exceeds its functional requirement. Obtaining the specific geometry of the Equivalent Channel (EC) for a given battery pack is done analytically and empirically in consideration of the product design limitations. This document is a precursor to J3277-1, which will present the practices to qualify that product leak tightness is equal or better than the maximum allowed EC for that product using applicable and commercially available leak test technologies.
Standard

Liquid Leak Tightness Standards for EVBattery Packs Recommended Practice

2022-03-28
WIP
J3277/1
This Recommended Practice proposes test practices to evaluate the Water Leak Tightness of Propulsion Battery Packs that emulates the equivalent results of IEC 60529 to an IPX7 level applying the Selected Equivalent Channel (EC) per SAE J3277 and provide guidelines for proper tooling design, validation, and leak test procedure. This practice is in consideration of the design limitation of some battery packs while utilizing applicable common air or tracer gas leak tightness technologies.
Standard

Life Cycle Testing of Electric Vehicle Battery Modules

2020-11-30
CURRENT
J2288_202011
This SAE Recommended Practice defines a standardized test method to determine the expected service life, in cycles, of electric vehicle battery modules. It is based on a set of nominal or baseline operating conditions in order to characterize the expected degradation in electrical performance as a function of life and to identify relevant failure mechanisms where possible. Accelerated aging is not included in the scope of this procedure, although the time compression resulting from continuous testing may unintentionally accelerate battery degradation unless test conditions are carefully controlled. The process used to define a test matrix of accelerated aging conditions based on failure mechanisms, and to establish statistical confidence levels for the results, is considered beyond the scope of this document. Because the intent is to use standard testing conditions whenever possible, results from the evaluation of different technologies should be comparable.
Standard

Performance Rating of Lithium Ion Electric Vehicle Battery Modules

2019-02-07
WIP
1798/2
This SAE Recommended Practice defines standard performance test procedures for LIBM’s. Specific values for minimum performance are not part of this specification, these tests are for performance comparison to a common testing platform. This document is subject to change to keep pace with technological advances. LIBM safety and abuse testing is comprehended in J2929 and J2464. LIBM life cycle testing is comprehended in J2288. LIBM form factor is irrelevant to the purpose of this document. LIBM shock and vibration testing is included in J2380.
X