Refine Your Search

Topic

Author

Search Results

Standard

ARP4754B Clarification Notice

2024-05-10
WIP
AIR4757
ARP4754B Clarification Notice to address typographical errors and clarify portions of the document to facilitate usage of the newly released ARP4754B.
Standard

Nuts, Self-Locking, UNS N07001 730 °C, 1100 MPa, and 1210 MPa Procurement Specification for, Metric

2024-05-09
CURRENT
MA1943C
This procurement specification covers aircraft quality self-locking nuts for wrenching (hex, spline) and anchor (plate, gang channel, shank) types of nuts made from a corrosion and heat-resistant nickel-base alloy of the type identified under the Unified Numbering System as UNS N07001. Tension height nuts having overall length of threaded portion not less than 1.2 times the nominal thread diameter have 1210 MPa minimum tensile strength at room temperature. Shear height nuts having shorter threaded portion have 1100 MPa minimum tensile strength at room temperature. Maximum test temperature of parts is 730 °C.
Best Practice

Lighting and Visual Information for Vulnerable Road User (VRU) Safety: An Introductory Review

2024-05-03
CURRENT
VRUSC-002-2024
Injuries and fatalities among pedestrians, cyclists, scooterists, highway road workers, and safety and emergency personnel—often referred to as vulnerable road users (VRUs)—continue to rise at alarming rates worldwide. Emphasizing the urgent need for enhanced safety measures, this study, commissioned by the Vulnerable Road User Safety Consortium™ (VRUSC) and conducted by the Light and Health Research Center at the Icahn School of Medicine at Mount Sinai, evaluates the potential effectiveness of lighting and visual information systems in improving VRU safety. The white paper presents a synthesis of published research on lighting and markings from the perspective of both human drivers and machine vision systems. It identifies potential preliminary guidelines for the intensity, color, temporal, and spatial characteristics of lighting and visual information that can help prevent crashes involving VRUs.
Standard

Safety Assessment of Transport Airplanes in Commercial Service

2024-04-16
WIP
ARP5150B
This document describes guidelines, methods, and tools used to perform the ongoing safety assessment process for transport airplanes in commercial service (hereafter, termed “airplane”). The process described herein is intended to support an overall safety management program. It is associated with showing compliance with the regulations, and also with assuring a company that it meets its own internal standards. The methods identify a systematic means, but not the only means, to assess ongoing safety.While economic decision-making is an integral part of the safety management process, this document addresses only the ongoing safety assessment process. To put it succinctly, this document addresses the “Is it safe?” part of safety management; it does not address the “How much does it cost?” part of the safety management.This document also does not address any specific organizational structures for accomplishing the safety assessment process.
Standard

Safety Assessment of General Aviation Airplanes and Rotorcraft in Commercial Service

2024-04-16
WIP
ARP5151B
This document describes a process that may be used to perform the ongoing safety assessment for (1) GAR aircraft and components (hereafter, aircraft), and (2) commercial operators of GAR aircraft. The process described herein is intended to support an overall safety management program. It is to help a company establish and meet its own internal standards. The process described herein identifies a systematic means, but not the only means, to assess continuing airworthiness.Ongoing safety management is an activity dedicated to assuring that risk is identified and properly eliminated or controlled. The safety management process includes both safety assessment and economic decision-making. While economic decision-making (factors related to scheduling, parts, and cost) is an integral part of the safety management process, this document addresses only the ongoing safety assessment process.
Standard

Safety-Security Interactions for Aircraft/System Development

2024-04-03
WIP
AIR8480
Generate guidance and example(s) regarding Airworthiness Security inputs to the Aircraft/System Development Processes in ARP 4754B sections 4.2 thru 4.6, and section 6. Also, clarify any essential output(s) from the Aircraft/System Development Processes that the Airworthiness Security Process DO-326A requires as input(s).
X