Refine Your Search

Topic

Author

Search Results

Standard

Forced Air or Forced Air/Fluid Equipment for Removal of Frozen Contaminants

2024-03-29
WIP
AIR6284A
This SAE Aerospace Information Report (AIR) covers forced air technology including: reference material, equipment, safety, operation, and methodology. This resource document is intended to provide information and minimum safety guidelines regarding use of forced air or forced air/fluid equipment to remove frozen contaminants. During the effective period of this document, relevant sections herein should be considered and included in all/any relevant SAE documents.
Standard

Battery Electric Vehicle Energy Consumption and Range Test Procedure

2024-03-26
WIP
J1634
This SAE Recommended Practice establishes uniform procedures for testing battery electric vehicles (BEVs) which are capable of being operated on public and private roads. The procedure applies only to vehicles using batteries as their sole source of power. It is the intent of this document to provide standard tests which will allow for the determination of energy consumption and range for light-duty vehicles (LDVs) based on the federal emission test procedure (FTP) using the urban dynamometer driving schedule (UDDS) and the highway fuel economy driving schedule (HFEDS) and provide a flexible testing methodology that is capable of accommodating additional test cycles as needed. Additionally, this SAE Recommended Practice provides five-cycle testing guidelines for vehicles performing supplementary testing on the US06, SC03, and cold FTP procedure. Realistic alternatives should be allowed for new technology.
Standard

Recommended Practice for Measuring Fuel Consumption and Range of Fuel Cell and Hybrid Fuel Cell Vehicles Fueled by Compressed Gaseous Hydrogen

2024-02-06
CURRENT
J2572_202402
This SAE Recommended Practice establishes uniform procedures for testing fuel cell and hybrid fuel cell electric vehicles, excluding low speed vehicles, designed primarily for operation on the public streets, roads and highways. The procedure addresses those vehicles under test using compressed hydrogen gas supplied by an off-board source or stored and supplied as a compressed gas onboard. This practice provides standard tests that will allow for determination of fuel consumption and range based on the US Federal Emission Test Procedures, using the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Driving Schedule (HFEDS). Chassis dynamometer test procedures are specified in this document to eliminate the test-to-test variations inherent with track testing, and to adhere to standard industry practice for fuel consumption and range testing.
Standard

Power Cylinder Effects on Friction and Fuel Economy

2024-01-22
CURRENT
J2904_202401
This document covers the mechanisms from the power cylinder, which contribute to the mechanical friction of an internal combustion engine. It will not discuss in detail the influence of other engine components or engine driven accessories on friction.
Standard

Ignition Cable Assemblies

2023-10-20
CURRENT
J2032_202310
This SAE Standard specifies the general requirements and test methods for non-shielded, high-voltage ignition cable assemblies.
Standard

J1349 Certfied Power Data for 2023 Dodge Challenger SRT - Demon 170 - E85 - Level 2

2023-09-08
CURRENT
CPFC2_23DODSR85
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
Standard

Aircraft Noise Level Reduction Measurement of Building Facades

2023-08-16
WIP
ARP6973A
This proposed revision of the Aerospace Recommended Practice (ARP6973) will provide minor edits to the existing document, plus an alternative third method for measuring the aircraft noise level reduction of building façades that is currently being validated. Airports and their consultants will be able to use any of the three methods presented in this revised ARP to determine the eligibility of structures exposed to aircraft noise to participate in an FAA-funded Airport Noise Mitigation Project, to determine the treatments required to meet project objectives, and to verify that such objectives are satisfied.
Standard

Aircraft Deicing Vehicle - Towable Deicers

2023-06-19
WIP
ARP8701
The document aims to provide guidance for safe practices, effective operations and continued compliance with revelant standards and aircraft manufacturer’s recommendations.
Standard

PWM HVAC Blower Controller and BLDC Motor Controller Efficiency Assessment

2023-06-13
CURRENT
J3109_202306
The intention of this standard is to establish a framework to measure the efficiency of PWM HVAC Blower Controllers and Brushless DC Motor Controllers and define a usage based overall efficiency. This result can then be used by vehicle OEMs to demonstrate compliance towards requirements or benchmarks established by regulatory agencies.
Standard

OBD Communications Compliance Test Cases for Heavy-Duty Components and Vehicles

2023-06-13
CURRENT
J1939/84_202306
The purpose of this SAE Recommended Practice is to verify that vehicles and/or components are capable of communicating a required set of information, which is described by the diagnostic messages specified in SAE J1939-73, that is in accordance with off-board diagnostic tool interface requirements contained in the government regulations cited below. This document describes the tests, methods, and results for verifying diagnostic communications from an off-board diagnostic tool (i.e., scan tool) to a vehicle and/or component. SAE members have generated this document to serve as a guide for testing vehicles for compliance with ARB and other requirements for emissions-related on-board diagnostic (OBD) functions for heavy-duty engines used in medium- and heavy-duty vehicles. The development of HD OBD regulations by U.S.
Standard

APU Gas Turbine Engine Test Cell Correlation

2023-05-19
CURRENT
ARP5435A
This paper describes a recommended practice and procedure for the correlation of test cells that are used for the performance testing of APU (auxiliary power unit) engines. Test cell correlation is performed to determine the effect of any given test cell enclosure and equipment on the performance of an engine relative to the baseline performance of that engine. The baseline performance is generally determined at the original equipment manufacturer (OEM) designated test facility. Although no original equipment manufacturer (OEM) documents are actually referenced, the experience and knowledge of several OEMs contributed to the development of this document. Each engine Manufacturer has their own practices relating to correlation and they will be used by those OEMs for the purpose of establishing certified test facilities.
Standard

Turboshaft/Turboprop Gas Turbine Engine Test Cell Correlation

2023-05-19
CURRENT
ARP4755C
This paper describes a recommended practice and procedure for the correlation of test cells that are used for the performance testing of turboprop and turboshaft engines. This Aerospace Recommended Practice (ARP) shall apply to both dynamometer and propeller based testing. Test cell correlation is performed to determine the effect of any given test cell enclosure and equipment on the performance of an engine relative to the baseline performance of that engine. Although no original equipment manufacturer (OEM) documents are actually referenced, the experience and knowledge of several OEMs contributed to the development of this document. Each engine manufacturer has their own practices relating to correlation and they will be used by those OEMS for the purpose of establishing certified test facilities.
Standard

Fuel Economy Measurement Road Test Procedure

2023-05-10
CURRENT
J1078_202303
This SAE Standard incorporates driving cycles that produce fuel consumption data relating to Urban, Suburban, and Interstate driving patterns and is intended to be used to determine the relative fuel economy among vehicles and driving patterns under warmed-up conditions on test tracks, suitable roads, or chassis dynamometers.1
Standard

Test Method for Measuring Power Consumption of Hydraulic Pumps for Trucks and Buses

2023-05-01
CURRENT
J1341_202305
This document covers evaluation techniques for determining the power consumption characteristics of engine driven hydraulic pumps used on heavy-duty trucks and buses. The testing technique outlined in this SAE Recommended Practice was developed as part of an overall program for testing and evaluating fuel consumption of heavy-duty trucks and buses. The technique outlined in this document provides a description of the test to be run to determine power consumption of these engine driven components, the type of equipment and facilities which are generally required to perform these tests are discussed in SAE J745. It is recommended that the specific operating conditions suggested throughout the test be carefully reviewed on the basis of actual data obtained on the specific vehicle operation.
Standard

Gasoline, Alcohol, and Diesel Fuel Surrogates for Materials Testing

2023-05-01
CURRENT
J1681_202305
This SAE Recommended Practice presents recommendations for test fuels and fluids that can be used to simulate real world fuels. The use of standardized test fluids is required in order to limit the variability found in commercial fuels and fluids. Commercial fuels can vary substantially between manufacturers, batches, seasons, and geographic location. Further, standardized test fluids are universally available and will promote consistent test results for materials testing. Therefore, this document: a Explains commercial automotive fuel components b Defines standardized components of materials test fluids c Defines a nomenclature for test fluids d Describes handling and usage of test fuels e Recommends fluids for testing fuel system materials The test fluid compositions specified in Section 7 of this document are recommended solely for evaluating materials.
Standard

Test Method for Measuring Power Consumption of Air Conditioning and Brake Compressors for Trucks and Buses

2023-05-01
CURRENT
J1340_202305
The testing techniques outlined in this SAE Recommended Practice were developed as part of an overall program tor testing and evaluating fuel consumption of heavy duty trucks and buses. The technique outlined in this document provides a general description of the type of equipment and facility which is necessary to determine the power consumption of these engine-driven components. It is recommended that the specific operating conditions suggested throughout the test be carefully reviewed on the basis of actual data obtained on the specific vehicle operation. If specific vehicle application is not known, see SAE J1343.
Standard

Turbofan and Turbojet Gas Turbine Engine Test Cell Correlation

2023-05-01
CURRENT
ARP741D
This SAE Aerospace Recommended Practice (ARP) describes a recommended practice and procedure for the correlation of test cells that are used for the performance testing of turbofan and turbojet engines. Test cell correlation is performed to determine the effect of any given test cell enclosure and equipment on the performance of an engine relative to the baseline performance of that engine. When baseline testing is performed in an indoor test cell, the baseline performance data are adjusted to open air conditions. Although no original equipment manufacturer (OEM) documents are actually referenced, the experience and knowledge of several OEM’s contributed to the development of this document. Each engine Manufacturer has their own practices relating to correlation and they will be used by those OEMs for the purpose of establishing certified test facilities.
X