Refine Your Search

Topic

Author

Search Results

Standard

Test Method for the Determination of Water Concentration in Polyol Ester and Diester Aerospace Lubricants by Coulometric Karl Fischer Titration

2024-05-17
CURRENT
ARP5991B
The test method describes the procedure for the direct determination of water concentration in polyol ester and diester based aerospace lubricants by commercially available automated coulometric Karl Fischer titration instruments. The method was validated to cover the water concentration range of 150 to 3500 µg/g. The method may also be suitable for the determination of water concentrations outside this range and for other classes of fluids; however, the precision statement shall not be applicable for such uses.
Standard

Aerospace Series - Notice of Change (NOC)

2024-05-17
CURRENT
AS9116A
The aviation, space, and defense industries rely on the development and manufacture of complex products comprised of multiple systems, subsystems, and components each designed by individual designers (design activities) at various levels within the supply chain. Each design or manufacturing activity controls various aspects of the configuration and specifications related to the product. When a change to design or process is requested or required, the change is typically required to be evaluated against the impacts to the entire system. Proposed changes to design data/information that the design activity identifies to be minor and have no effect on the product requirements or specifications, have the potential to be implemented and approved, where authorized to do so, but requires notification. Changes that affect customer mandated requirements or specifications shall be approved prior to implementation.
Standard

Brake Rotor Thermal Cracking Procedure for Vehicles Below 4 540 kg GVWR

2024-05-17
CURRENT
J2928_202405
This recommended practice is derived from common test sequences used within the industry. This procedure applies to all on-road passenger cars and light trucks up to 4 540 kg of GVWR. This recommended practice does not address other aspects such as performance, NVH, and durability. Test results from this recommended practice should be combined with other measurements and dynamometer tests (or vehicle-level tests), and acceptance criteria to validate a given design or configuration.
Standard

Off-Vehicle Brake Testing for Service Brakes Over 10000 Pounds GVW Air, Hydraulic, and Mechanical Actuation

2024-05-16
WIP
J2806
Subject document is specifically intended for service brakes and service brakes when used for parking and/or emergency brakes (only) that are commonly used for automotive-type, ground-wheeled vehicles exceeding 4536 kg (10000 pounds) gross vehicle weight rating (GVWR). Subject specification provides the off-vehicle procedures, methods, and processes used to objectively determine suitability of tactical and combat ground-wheeled vehicle brake systems and selected secondary-item brake components (aka, aftermarket or spare parts), including brake “block” for commercial applications only, specifically identified within subject document. Subject specification is primarily based on known industry and military test standards utilizing brake inertia dynamometers. Targeted vehicles and components include, but may not be limited to, the following:a.
Standard

Safety Considerations for Electrified Propulsion Aircraft

2024-05-16
WIP
AIR8677
This SAE Aerospace Information Report (AIR) provides information to be considered when performing the safety assessment of electrified propulsion aircraft. Its main focuses are: ● Typical new technologies introduced by electrified propulsion and their impact on safety ● The failure modes of electrified propulsion systems and their components ● Potential effects of failures at system and aircraft levels ● Possible strategies to minimize failures and mitigate their effects The information in this document may be used to generate inputs for system and aircraft safety assessments based on industry standards such as SAE ARP4761. The first issue of this document addresses battery systems, power electronics, eMotors, electrical interconnects and thermal management for fully electric configurations. Future issues are expected to address other subsystems, components and configurations.
Standard

Pneumatic Tire/Wheel/Runflat Assembly Qualifications for Military Tactical Wheeled Vehicles

2024-05-15
WIP
J2014
This SAE Standard applies to all combinations of pneumatic tires, wheels, or runflat devices (only as defined in SAE J2013) for military tactical wheeled vehicles only as defined in SAE J2013. This applies to original equipment and new replacement tires, retread tires, wheels, or runflat devices.This document describes tests and test methodology, which will be used to evaluate and measure tire/wheel/runflat system and changes in vehicle performance.All of the tests included in this document are not required for each tire/wheel/runflat assembly. The Government Tire Engineering Office and Program Office for the vehicle system have the responsibility for the selection of a specific test(s) to be used. The selected test(s) should be limited to that required to evaluate the tire/wheel/runflat system and changes in vehicle performance.
Standard

J1939 Digital Annex

2024-05-15
WIP
J1939DA
This document is intended to supplement the SAE J1939 documents by offering the SAE J1939 information in a form that can be sorted and search for easier use.
Best Practice

AVSC Best Practice for Core Automated Vehicle Safety Information

2024-05-14
CURRENT
AVSC-D-02-2024
Automated driving system (ADS) manufacturers, developers, and operators need to provide clear information on their safety approach to relevant stakeholders. Explainability to diverse audiences helps build trust in statements from these organizations towards the shared value of safety. A defined list of core safety topics can help set expectations when communicating deployment and use-case-specific automated vehicle (AV) safety information. The topics listed in this best practice are implementation-agnostic and broadly applicable. This best practice describes how safety is continuous and connected throughout lifecycle stages and highlights considerations when including safety metrics as part of the communicated information. It lists topics that are considered core, provides a rationale, illustrative examples where applicable, suggestions of content that could be included for the example, and lists references and industry examples for further information.
Standard

ARP4754B Clarification Notice

2024-05-10
WIP
AIR4757
ARP4754B Clarification Notice to address typographical errors and clarify portions of the document to facilitate usage of the newly released ARP4754B.
Standard

Reliability in the frame of Structure Health Monitoring and Management

2024-05-09
WIP
AIR8950
The document describes typical processes with examples on how to manage reliability assessment hardware and software used on structural health monitoring systems, and for structure health management solutions. It addresses reliability assessment guidelines from design phase, manufacturing, assemblies, installation, considering installation and environmental conditions. Link between Quality system and reliability assessment is developed
Standard

Aircraft Tire-to-Wheel Performance Characteristics

2024-05-09
CURRENT
ARP5507A
This SAE Aerospace Recommended Practice (ARP) defines the performance criteria and validation for tire circumferential movement on the rim, in the laboratory, by a static test, as well as a performance assessment in service. This document is applicable to braked wheel positions using both bias ply and radial aircraft tires.
Standard

Combined Cornering and Braking Test for Truck and Bus Tires

2024-05-09
CURRENT
J2675_202405
This SAE Recommended Practice describes a test method for determination of heavy truck (Class VI, VII, and VIII) tire force and moment properties under combined cornering and braking conditions. The properties are acquired as functions of slip angle, normal force, and slip ratio. Slip angle and normal force are changed incrementally using a sequence specified in this document. At each normal force and slip angle increment, the slip ratio is continually changed by application of a braking torque ramp. The data are suitable for use in vehicle dynamics modeling, comparative evaluations for research and development purposes, and manufacturing quality control. This document is intended to be a general guideline for testing on an ideal machine. Users of this recommended practice may modify the recommended protocols to satisfy the needs of specific use-cases, e.g., reducing the recommended number of test loads and/or pressures for benchmarking purposes.
X