Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Characterization of Microbial Contamination in Pretreated Urine Collected from the ISS Urine Processing Assembly during Ground Testing

2009-07-12
2009-01-2421
With the installation of the Water Recovery System (WRS) during mission STS-126 in 2008, the International Space Station (ISS) added the capability to recover clean water for reuse from crewmember urine and atmospheric humidity condensate, including EVA (Extravehicular Activity) wastes. The ability to collect, store and process these waste streams is required to increase potable water recovery and support the ISS crew augmentation planned for 2009. During ground testing of the Urine Processing Assembly (UPA), one of two primary component subsystems that comprise the WRS, significant fouling was repeatedly observed in stored urine pretreated with 0.56% of chromium trioxide and sulfuric acid. During initial observation, presumptive microbiological growth clogged and damaged flight-rated hardware under test as part of a risk-mitigation Flight Experiment (FE).
Technical Paper

Subscale Testbed for Characterizing Regenerable Adsorbents used in Air Revitalization of Spacecraft Atmospheres

2009-07-12
2009-01-2526
A sub-scale testbed for characterizing the dynamic performance of regenerable adsorbents for filtering trace contaminants (TCs) from cabin atmospheres was built and tested. Regenerable adsorbents employed in pressure-swing adsorption (PSA) systems operate in a dynamic environment, where they undergo repeated loading / regeneration cycles. Adsorbents have a given chemical specificity for non-methane TCs depending on their composition, and on the humidity and temperature at which they operate. However, their ability to filter TCs is also affected by contact time, cycle time, regeneration vacuum quality and thermal conditioning.
Technical Paper

Design of a UV-A LED Photocatalytic Oxidation Reactor for Testing Spacecraft Potable Water Disinfection Technologies

2009-07-12
2009-01-2509
This report describes the design, assembly, and testing of a modified, re-circulating drip flow reactor to quantify the electrical, optical, and thermal performance of solid-state ultraviolet (UV) lighting and semi-conducting photocatalyst for potable water disinfection by advanced oxidation processes. The reactor test assembly incorporates high-output UV-A Light Emitting Diodes (LEDs) with active thermal control to reject heat and generate reactive oxygen species from immobilized titanium dioxide attached to borosilicate glass in the laminar flow stream. Compared with UV-excimer and UV-mercury arc lamps, the UV-A LED system demonstrated excellent thermal stability and good electrical and optical performance.
Technical Paper

Effects of Relative Humidity on the Adsorption of Dichloromethane by Carbosieve SIII

2007-07-09
2007-01-3249
Carbosieve SIII was used to filter dichloromethane (DCM) from a simulated spacecraft gas stream. This adsorbent was tested as a possible commercial-off-the-shelf (COTS) filtration solution to controlling spacecraft air quality. DCM is a halocarbon commonly used in manufacturing for cleaning and degreasing and is a typical component of equipment offgassing in spacecraft. The performance of the filter was measured in dry and humid atmospheres. A known concentration of DCM was passed through the adsorbent at a known flow rate. The adsorbent removed dichloromethane until it reached the breakthrough volume. Carbosieve SIII exposed to dry atmospheric conditions adsorbed more DCM than when exposed to humid air. Carbosieve SIII is a useful thermally regenerated adsorbent for filtering DCM from spacecraft cabin air. However, in humid environments the gas passes through the filter sooner due to co-adsorption of additional water vapor from the atmosphere.
Technical Paper

Assessment of Silver Based Disinfection Technology for CEV and Future US Spacecraft: Microbial Efficacy

2007-07-09
2007-01-3142
This work describes the microbiological assessment and materials compatibility of a silver-based biocide as an alternative to iodine for the Crew Exploration Vehicle (CEV) and future spacecraft potable water systems. In addition to physical and operational anti-microbial counter-measures, the prevention of microbial growth, biofilm formation, and microbiologically induced corrosion in water distribution and storage systems requires maintenance of a biologically-effective, residual biocide concentration in solution and on the wetted surfaces of the system. Because of the potential for biocide depletion in water distribution systems and the development of acquired biocide resistance within microbial populations, even sterile water with residual biocide may, over time, support the growth and/or proliferation of bacteria that pose a risk to crew health and environmental systems.
Technical Paper

Testbed for Determining the Filtering Capacities of COTS Adsorbents

2007-07-09
2007-01-3137
A lab-scale testbed for screening and characterizing the chemical specificity of commercial “off-the-shelf” (COTS) polymer adsorbents was built and tested. COTS polymer adsorbents are suitable candidates for future trace contaminant (TC) control technologies. Regenerable adsorbents could reduce overall TC control system mass and volume by minimizing the amounts of consumables to be resupplied and stored. However, the chemical specificity of these COTS adsorbents for non-methane volatile organic compounds (NMVOCs) (e.g., methanol, ethanol, dichloromethane, acetone, etc) commonly found in spacecraft is unknown. Furthermore, the effect of humidity on their filtering capacity is not well characterized. The testbed, composed of a humidifier, an incubator, and a gas generator, delivers NMVOC gas streams to conditioned sorbent tubes.
Technical Paper

Designing a Reusable Ethylene Filter Cartridge for Plant Flight Hardware: Characterization of Thermally Desorbing Compounds

2005-07-11
2005-01-2953
The chemical specificity of several adsorbents, capable of being recycled by thermal desorption, was determined using volatile organic compounds (VOCs) found in ISS cabin air. These VOC adsorbents will be used to design a reusable filter to control ethylene in plant growth chambers and other STS/ISS biological payloads. A reusable filter to remove plant-produced ethylene from plant growth chambers could help minimize the mass and power use of plant flight hardware. Spaceflight-rated plant growth chambers employ either passive or active catalytic scrubbers for maintaining acceptable levels of VOCs. Passive systems require consumables, while active systems require power and their performance can be degraded in high humidity environments. Each adsorbent was loaded with known amounts of VOCs at a known flow rate. The filtering capacity and chemical specificity of each compound was determined from measurements pre- and post-filter VOC concentration.
Technical Paper

Bacterial and Fungal Communities in BPS Chambers and Root Modules

2003-07-07
2003-01-2528
The PESTO (Photosynthetic Experiment System Testing and Operation) experiment flew in the Biomass Production System (BPS) to International Space Station (ISS) on STS-110 (Atlantis) April 8, 2002, and returned on STS-111 (Endeavour) June 19, 2002, after 73 days in space. The ground control was conducted on a two-week delay at Kennedy Space Center in a BPS unit under environmental conditions comparable to ISS. Wheat (Triticum aestivum cv Apogee) and Brassica rapa cv Astroplant were independently grown in root modules for multiple grow-outs. On-orbit harvests, root modules exchanges and primings, seeds imbibitions, and gas and water samplings occurred at periodic intervals; all were replicated in ground controls. Many operations required crew handling and open access to individual chambers, allowing the exchange of microorganisms between the crew environment and the BPS modules.
Technical Paper

Cleansing Agents for Human Hygiene in Space Travel: Considerations for Biological Processing of Wastewater

2002-07-15
2002-01-2352
A multitude of personal cleaning products, each of which typically contains multiple surfactants, are available for terrestrial use. Selection of surfactant(s) for use in extended space missions should consider, in addition to human comfort and cleansing power, potential impacts on biological processing systems under consideration for such missions. This paper reviews the surfactants present in commercial formulations, their proper nomenclature, and relevant properties such as foaming, biodegradability of organic fractions (both with respect to rate and pathway), presence of inorganic components (e.g., sulphate or counter ions such as sodium), and analytical methods for monitoring their concentrations in waste stream. The background information and results from preliminary testing are used to draw conclusions about the proper approach for selecting surfactants for use in space missions containing biological waste treatment systems.
Technical Paper

Measurement of Gas Exchange Characteristics of Developing Wheat in the Biomass Production System

2000-07-10
2000-01-2292
The PESTO (Photosynthesis Experiment and System Testing and Operation) spaceflight experiment is designed to directly measure gas exchange of developing stands of wheat (Triticum aestivum L.) on the International Space Station (ISS). Gas exchange measurements will characterize photosynthesis and transpiration in microgravity at different stages of development. The Biomass Production System (BPS), a double middeck-sized plant growth will be the plant growth hardware used to support this experiment on-board ISS. This report presents results from a 10-day functional test of PESTO protocols in the BPS. Wheat canopy CO2 assimilation rate for 14-24 day-old plants grown in the BPS chambers was 6-7 μmol m-2 s-1 during this test. Plant responses to CO2 and photosynthetic photon flux (PPF) response curves were obtained at different stages of development by altering CO2 and light conditions.
Technical Paper

Development and Testing of Inocula for Biodegradation of Igepon Under Denitrifying Conditions

1999-07-12
1999-01-1949
Bioreactor technology for bioprocessing graywater solutions in microgravity is under development by NASA at Johnson Space Center and at major aerospace companies. Inoculum sources have been inconsistent. Startup and subsequent operation of ground-based bioreactors may have been adversely affected by this inconsistency and/or by inoculation procedures. The goal of the research reported in this paper is to develop an inoculum that will completely biodegrade Igepon T42 soap to carbon dioxide and water under anaerobic, denitrifying conditions and with process conditions set by bioreactor design requirements for microgravity operation. Potential inoculum sources from two habitats within the KSC-ALS breadboard project were developed for potential use. The effects of pH (7.2 vs. 9.0, buffered) on soap degradation by the two inocula was determined in a flask study. Nearly all of the soap was degraded at pH 7.2 while nearly none was degraded at pH 9.0. Both inocula behaved similarly.
Technical Paper

Stability and reliability of biological reactors

1997-07-01
972549
Bioregenerative resource recovery components for Advanced Life Support systems will need to be reliable and stable for long duration space travel. Since 1989, bioregenerative life support research at the ALS Breadboard Project has examined processing of inedible crop residues in bioreactors for recovery of nutrients for replenishment of crop hydroponic solutions. Bioreactor operation has been reliable as demonstrated by continuous operation for up to 418 days with long periods of steady state conditions. Bioreactors have demonstrated stability following unplanned, non-lethal perturbations in pH, temperature, dissolved oxygen, and inedible residue supply. In each instance, a rapid return to steady state conditions was observed.
X