Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Improving the Columbus Integrated Overall Thermal Mathematical Model (IOTMM) Using Computational Fluid Dynamics (CFD)

2005-07-11
2005-01-2796
The cabin space of the Columbus APM is well ventilated by air entering through multiple air diffusers and exiting via the return grid and hatch. Therefore, the heat transfers by bulk fluid motion and by convection to the walls need to be experimentally and/or numerically investigated and implemented in the thermal mathematical models (TMM) describing the cabin. CFD analysis provided key data on the thermal couplings due to convective heat transfer and bulk fluid motion for the thermal mathematical model, which in turn was used to correlate test data from an environmental control system test and to provide supplemental information on assumptions used in the lumped capacitance model. This paper presents the logic and results of the steady-state CFD analysis, the potential implementation of the results in a thermal mathematical model, and compares these results with test data obtained during a separate Columbus cabin ventilation qualification test.
Technical Paper

Results of Breadboard Tests Withan Integrated CO2, Humidity and Thermal Control System

2003-07-07
2003-01-2348
Membrane gas absorption and desorption (MGA/MGD) for the removal of CO2 in manned spacecraft or other enclosed environment is subject of study by Stork and TNO for many years. The system is based on the combination of membrane separation and gas absorption. Advantage of this technology is that the system not only can be used to remove the carbon dioxide but also to control the relative humidity and temperature. Absorption of moisture and heat is achieved by cooling the absorption liquid below the dewpoint temperature of the gas stream. From the start in 1995, the Crew Transfer Vehicle is used as a basis for the design (1,2). Compared to the planned air conditioning system, consisting of a condensing heat exchanger, LiOH cartridges and a water evaporator assembly, MGA/MGD shows advantage in volume, mass and power consumption. The absorption liquid circulates through the spacecraft thermal control loop, replacing the coolant water.
Technical Paper

An Experimental Model of a Biological Life Support System with the Intra-system Mass Exchange Closed to a High Degree, Based on “Biological Combustion” of Dead-end Plant Residues

2003-07-07
2003-01-2417
This work concerns the model of a biological life support system consisting of higher plants, a unit of “biological combustion”, a physicochemical reactor, and 1/30 of a human. The cycling of the main biogenic elements of the system, water, and carbon dioxide was closed to a high degree (more than 95%). Experimental-theoretical analysis of the cycling processes in the system was based on the calculations of mass exchange rates dynamics and some stoichiometric equations. The model was designed for the study of mechanisms of material transformation and the directions of mass exchange processes in the artificial ecosystems.
Technical Paper

Integrated CO2 and Humidity Control by Membrane Gas Absorption

1997-07-14
972560
In a harmonized ESA/NIVR project the performance of membrane gas absorption for the simultaneous removal of carbon dioxide and moisture has been determined experimentally at carbon dioxide and humidity concentration levels representative for spacecraft conditions. Performance data at several experimental conditions have been collected. Removal of moisture can be controlled by the temperature of the absorption liquid. Removal of carbon dioxide is slightly affected by the temperature of the absorption liquid. Based on these measurements a conceptual design for a carbon dioxide and humidity control system for the Crew Transport Vehicle (CTV) is made. For the regeneration step in this design a number of assumptions have been made. The multifunctionality of membrane gas absorption makes it possible to combine a number of functions in one compact system.
Technical Paper

Design and Qualification of Methane Filled Heat Pipes for the SCIAMACHY Radiant Cooler

1997-07-01
972451
Methane-filled heat pipes have been developed and qualified for the SCIAMACHY thermal bus assembly. The heat pipes provide an efficient heat transfer in the temperature range 100-160 K. Extensive qualification testing has been performed. The thermal bus assembly is part of the Thermal Bus Unit (TBU) of the SCIAMACHY Radiant Cooler.
Technical Paper

First Use of ECOSIM in Air Management Systems

1992-07-01
921292
ECOSIM is a software tool for the simulation of Environmental Control and Life Support (ECLS) systems which has been developed for the European Space Agency. A preliminary model of the Hermes Air Management System has been developed during the ECOSIM testing in order to assess the functionality of the software and to verify its results with those obtained from previous simulation tools. The model represents the Hermes cabin with its crew and it includes submodels for the sub-systems performing the following functions: Temperature and Humidity Control. Total Pressure and Composition Control. Air revitalisation. The interactions between these different subsystem are taken into account by the model, while many of the previous simulations made assumptions to decouple the different subsystems (e.g: a constant cabin temperature has been assumed during cabin depressurization transients, to decouple the pressure control section from the air conditioning section).
X