Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Performance of WPA Conductivity Sensor During Two-Phase Fluid Flow in Microgravity

2003-07-07
2003-01-2693
The Conductivity Sensor designed for use in the Node 3 Water Processor Assembly (WPA) was based on the existing Space Shuttle application for the fuel cell water system. However, engineering analysis has determined that this sensor design is potentially sensitive to two- phase fluid flow (gas/liquid) in microgravity. The source for this sensitivity is the fact that free gas will become lodged between the sensor probe and the wall of the housing without the aid of buoyancy in 1-g. Once gas becomes lodged in the housing, the measured conductivity will be offset based on the volume of occluded gas. A development conductivity sensor was flown on the NASA Microgravity Plane (KC-135) to measure the offset, which was determined to range between 0 and 50%. This range approximates the offset experienced in 1-g gas sensitivity testing.
Technical Paper

Development, Testing, and Packaging of a Redundant Regenerable Carbon Dioxide Removal System (RRCRS)

2002-07-15
2002-01-2530
Enhancements to the Regenerable Carbon Dioxide Removal System (RCRS) have undergone full-scale, pre-prototype development and testing to demonstrate a redundant system within the volume allotted for the RCRS on the Space Shuttle Orbiter. The concept for a Redundant Regenerable Carbon Dioxide Removal System (RRCRS) utilizes the existing canister of the RCRS, but partitions it into two, independent, two-bed systems. This partitioning allows for two, fully capable RCRS units to be packaged within the original volume, thus reducing stowage volume and launch weight when compared to the flight RCRS plus the backup LiOH system. This paper presents the results of development and testing of a full-scale, pre-prototype RRCRS and includes an overview of the design concept for a redundant system that can be packaged within the existing envelope.
Technical Paper

Multi-Purpose Logistics Module (MPLM) Cargo Heat Exchanger

2002-07-15
2002-01-2415
This paper describes the New Shuttle Orbiter's Multi-Purpose Logistics Module (MPLM) Cargo Heat Exchanger (HX) and associated MPLM cooling system. Heat Exchanger (HX) design and system performance characteristics of the system are presented.
Technical Paper

The Development of the Wiped-Film Rotating-Disk Evaporator for the Reclamation of Water at Microgravity

2002-07-15
2002-01-2397
This project is a Phase III SBIR contract between NASA and Water Reuse Technology (WRT). It covers the redesign, modification, and construction of the Wiped-Film Rotating-Disk (WFRD) evaporator for use in microgravity and its integration into a Vapor Phase Catalytic Ammonia Removal (VPCAR) system. VPCAR is a water processor technology for long duration space exploration applications. The system is designed as an engineering development unit specifically aimed at being integrated into NASA Johnson Space Center's Bioregenerative Planetary Life Support Test Complex (BIO-Plex). The WFRD evaporator and the compressor are being designed and built by WRT. The balance of the VPCAR system and the integrated package are being designed and built by Hamilton Sundstrand Space Systems International, Inc. (HSSSI) under a subcontract with WRT. This paper provides a description of the VPCAR technology and the advances that are being incorporated into the unit.
X