Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Fluid Systems Servicing and Leak Check for the International Space Station

2000-07-10
2000-01-2310
There is an assortment of hardware designed to work together to provide fluid servicing, seal leak checking and other plumbing-type services on the International Space Station (ISS). The Fluid Systems Servicer (FSS) is designed to drain, purge, fill, and recirculate fluids for on-orbit start-up, scheduled and unscheduled maintenance. The FSS will utilize space vacuum for purging operations on-orbit via the Vacuum Access Jumpers (VAJ), thus providing vacuum back-filling and static leak check capability with minimal power consumption. The FSS services Internal Thermal Control Systems (ITCS) and Environmental Control & Life Support (ECLS) System hardware in the pressurized elements of the ISS. The FSS gas/liquid separator fulfills an additional design requirement of removing entrained gas from fluids by means of a static membrane separator. The FSS and some ancillary equipment also perform Seal Leak Check (SLC), pressure removal and equalization, and window assembly maintenance on ISS.
Technical Paper

Functional Testing and Packaging of a Fluid Systems Servicer (FSS) for the International Space Station

1998-07-13
981770
The Fluid Systems Servicer (FSS) is designed to drain, purge, fill, and recirculate fluids while performing on-orbit start-up, scheduled and unscheduled maintenance for fluid lines leak check ports, and window assemblies on the International Space Station (ISS). The FSS will undergo extensive functional testing to verify that all design requirements have been met. The FSS will utilize space vacuum for purging operations on-orbit, thus providing vacuum back-filling capability with minimal power consumption. For ground testing, the application of space vacuum will be simulated. A full scale mock-up of the Space Station 20″ Window Assembly has been built for requirements verification. Two desiccator assembly Orbital Replacement Units (ORU)s will be tested to assure the FSS can perform window servicing requirements. The FSS gas/liquid separator fulfills an additional design requirement of removing gas bubbles from fluids with a static membrane separator.
Technical Paper

A Comparison of Russian and American Oxygen Generation Hardware

1994-06-01
941250
Cooperation between Russia and the United States on manned spaceflight has led to unprecedented openness, resulting in the ability to now compare the characteristics of environmental control/life support hardware selected to generate oxygen (O2) by water electrolysis for space station applications. This comparison in this paper focuses on the characteristics that have the greatest effect on the cost of assembling and maintaining the hardware in space: launch weight, volume, power consumption, resupply requirements and maintenance labor.
Technical Paper

Design of a Water Electrolysis Flight Experiment

1993-07-01
932087
Supply of oxygen (O2) and hydrogen (H2) by electrolyzing water in space will play an important role in meeting the National Aeronautics and Space Administration's (NASA's) needs and goals for future space missions. Both O2 and H2 are envisioned to be used in a variety of processes including crew life support, spacecraft propulsion, extravehicular activity, electrical power generation/storage as well as in scientific experiment and manufacturing processes. Life Systems, Inc., in conjunction with NASA, has been developing an alkaline-based Static Feed Electrolyzer (SFE). During the development of the water electrolysis technology over the past 23 years, an extensive engineering and scientific data base has been assembled.
Technical Paper

An Update of the Readiness of Vapor Compression Distillation for Spacecraft Wastewater Processing

1992-07-01
921114
Vapor Compression Distillation technology has proved its readiness as a spacecraft wastewater processor as evidenced by selection of this technology for the Urine Processor Assembly aboard Space Station Freedom. In conjunction with Boeing Aerospace Company and the National Aeronautics and Space Administration, Life Systems' technical team has made significant advances in both flight hardware design and software operational aspects. The flight hardware design has focused on Orbital Replacement Unit (ORU) design, ORU rack packaging and ORU weight reduction. On orbit operational aspects of software include operating modes, process control loops, fault detection and fault isolation. These improvements are further indication that Vapor Compression Distillation will be the key to providing wastewater regeneration essential for long-term human survival in space.
Technical Paper

Electrochemical CO2 and O2 Separation for Crew and Plant Environments

1992-07-01
921319
For long-duration space explorations such as the advanced manned missions to the moon and Mars, fully optimized environmental conditions and control systems are essential. This approach will not only maximize the efficiencies of the crew and other systems, but also minimize the requirements for power, weight, volume and expendables. Life Systems, working with the National Aeronautics and Space Administration-Johnson Space Center, has been investigating ways to apply various physical, chemical and electrochemical methods for this purpose. This paper presents a description of a closed ecosystem concept that includes electrochemical CO2 and O2 separators and a moisture condenser/separator for maintaining CO2, O2 and humidity levels in the crew and plant habitats at their respective optimal conditions. This concept was developed as a part of the Advanced Electrochemical CO2 Removal Process Study program sponsored by NASA-JSC.
Technical Paper

Static Feed Electrolyzer Technology Advancement for Space Application

1987-07-01
871450
The Static Feed Electrolyzer (SFE) is being developed by the National Aeronautics and Space Administration (NASA) through Life Systems, Inc. (Life Systems) as part of NASA's effort to mature water electrolysis technology for application in the Space Station Environmental Control/Life Support System (ECLSS), Propulsion and Reboost System, Extravehicular Activity (EVA) and Electric Power System (EPS). The water electrolysis process generates metabolic oxygen (O2) for the crew cabin, EVA backpacks and air lock, and provides reactants for carbon dioxide (CO2) removal, CO2 reduction, propulsion/reboost systems and fuel cell electric power generation. The use within all of these applications will make water electrolysis a fundamental utilitylike technology for the Space Station.
Technical Paper

Phase Change Water Recovery for Space Station - Parametric Testing and Analysis

1986-07-14
860986
Vapor Compression Distillation (VCD) technology for phase change recovery of potable water from wastewater has evolved as a technically mature approach for use aboard the Space Station. A program to parametrically test an advanced preprototype Vapor Compression Distillation Subsystem (VCDS) was completed by Life Systems for the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) during 1985. In parallel with parametric testing, a hardware improvement program was initiated to incorporate and verify certain key improvements into the advanced preprototype VCDS following initial parametric tests. Specific areas of improvements included long-life, self-lubricated bearings, a lightweight, highly-efficient compressor and a long-life magnetic drive. These improvements are now incorporated and verification testing started.
Technical Paper

Space Station Environmental Control/Life Support System Engineering

1985-07-01
851375
The Space Station requirements are divided into eleven systems. One of these systems, the Environmental Control/Life Support System (ECLSS) is further divided into seven functional categories as follows: Atmosphere Revitalization System, Atmosphere Pressure and Composition Control System, Module Temperature and Humidity Control System, Water Management System, Waste Management System, EVA Support and Safe Haven. The paper reviews the requirements for ECLSS in terms of the initial and growth operational capabilities of the Reference Space Station architecture. The paper reviews some of the results of a systems engineering study under way. Both regenerative and nonregenerative ECLSS techniques are reviewed. A design for all of the primary and backup technologies was established so that accurate trade studies could be performed. Each technology design started at a common interface condition for competing technologies.
Technical Paper

Static Feed Water Electrolysis System for Space Station O2 and H2 Generation

1985-07-01
851339
Long-term manned operation of NASA's Space Station will dictate use of regenerative processes for the revitalization of the Spacecraft atmosphere. An alkaline Static Feed Water Electrolysis System (SFWES) is being developed by Life Systems, Inc. and NASA to generate metabolic oxygen (O2) for the crew, provide hydrogen (H2) for reduction of concentrated carbon dioxide (CO2) and compensate for O2 lost overboard due to Space Station leakage. The SFWES employs highly efficient electrodes with rugged unitized cell construction. Integrated mechanical components and advanced automated Control/Monitor Instrumentation (C/M I) are used to reduce system complexity while enhancing overall reliability and maintainability. Crew size and the unique environment of space drive the system design.
X