Refine Your Search

Search Results

Viewing 1 to 18 of 18
Journal Article

Lessons Learned from the Wide Field Camera 3 TV1 and TV2 Thermal Vacuum Test Campaigns

2008-06-29
2008-01-2038
The Wide Field Camera 3 (WFC3) instrument has undergone two complete thermal vacuum tests (TV1 and TV2), during which valuable lessons were learned regarding test configuration, test execution, model capabilities, and modeling practices. The very complex thermal design of WFC3 produced a number of challenging aspects to ground testing with numerous ThermoElectric Coolers and heat pipes, not all of which were functional. Lessons learned during TV1 resulted in significant upgrades to the model capabilities and a change in the test environment approach for TV2. These upgrades proved invaluable during TV2 when pre-test modeling assumptions proved to be false. Each of the lessons learned relate to one of two following broad statements: 1. Ensure the design can be tested and that the effect of non-flight like conditions is well understood, particularly with respect to non passive devices (TECs, Heat Pipes, etc) 2.
Technical Paper

The CEV Smart Buyer Team Effort: A Summary of the Crew Module & Service Module Thermal Design Architecture

2007-07-09
2007-01-3046
The NASA-wide CEV Smart Buyer Team (SBT) was assembled in January 2006 and was tasked with the development of a NASA in-house design for the CEV Crew Module (CM), Service Module (SM), and Launch Abort System (LAS). This effort drew upon over 250 engineers from all of the 10 NASA Centers. In 6 weeks, this in-house design was developed. The Thermal Systems Team was responsible for the definition of the active and passive design architecture. The SBT effort for Thermal Systems can be best characterized as a design architecting activity. Proof-of-concepts were assessed through system-level trade studies and analyses using simplified modeling. This nimble design approach permitted definition of a point design and assessing its design robustness in a timely fashion. This paper will describe the architecting process and present trade studies and proposed thermal designs
Technical Paper

Thermal Assessment of Swift Instrument Module Thermal Control System during First 2.5 Years in Flight

2007-07-09
2007-01-3083
On Day 97, 2005, a temperature excursion of the Burst Alert Telescope (BAT) loop heat pipe (LHP) #1 compensation chamber (CC) caused this LHP shut down. It had no impact on the Gamma Ray Burst (GRB) detection because LHP #0 was nominal. After LHP #1 was started up and its primary heat controller was disabled on Day 98, both LHPs have been nominal. On Day 337, 2004, the X-Ray Telescope (XRT) thermo-electric cooler (TEC) power supply (PS) suffered a single point failure. The charge-coupled device (CCD) has been cooled by the radiator passively to -50°C or colder most of the time. The CCD temperature meets the main objective of pinpointing GRB afterglow positions. With these anomalies overcome, the Instrument Module (IM) thermal control system (TCS) is nominal during the first 2.5 years in flight.
Technical Paper

Hubble Space Telescope Thermal Math Model Improvement after Fifteen Years of On-Orbit Operations

2006-07-17
2006-01-2280
The Hubble Space Telescope (HST) was launched in 1990 and has undergone several Servicing Missions that have replaced and repaired various scientific and support hardware. As preparations begin for Servicing Mission Four (SM4) in 2008 and the life extension activities that follow, the Telescope Thermal Math Model (TMM) has been improved using the latest thermal analysis software and techniques. Several efforts have been made to improve the HST system-level TMM since launch. A brief history of the major model updates, as well as the motivation behind the changes has been provided. The current improvements have provided the HST systems-level TMM a greater level of detail, while making model control more user-friendly and the results easier to verify. Several modeling techniques useful for spacecraft thermal design and operations support are discussed.
Technical Paper

An Evaluation of the Hubble Space Telescope Thermal Design in Preparation for the Final Servicing Mission

2006-07-17
2006-01-2279
Having been in operation for over 15 years, the Hubble Space Telescope (HST) had experienced significant changes in both hardware upgrades and operational modes. The changes were necessary to improve performance of some equipment and to replace failed electronics in others. Hardware replacements were done in several servicing missions. To accommodate the change in physical condition of HST, alterations in the way the telescope is operated were also required. The final opportunity to make any hardware changes on HST is during Servicing Mission 4 (SM-4) which is currently scheduled for December of 2007. It is important to make the most appropriate changes in order to ensure that HST will be in good operating condition until its planned termination. In order to provide manifest input to the HST project for the final servicing mission, the HST thermal team must conduct careful evaluation of every single piece of hardware on HST.
Technical Paper

Thermal Assessment of Swift BAT Instrument Thermal Control System in Flight

2005-07-11
2005-01-3037
The Burst Alert Telescope (BAT) instrument of the Swift mission consists of a telescope assembly, a Power Converter Box (PCB), and a pair of Image Processor Electronics (IPE) boxes (a primary and a redundant). The telescope assembly Detector Array thermal control system includes eight constant conductance heat pipes (CCHPs), two loop heat pipes (LHPs), a radiator that has AZ-Tek's AZW-LA-II low solar absorptance white paint, and precision heater controllers that have adjustable set points in flight. The PCB and IPEs have Z93P white paint radiators. Swift was successfully launched into orbit on November 20, 2004. This paper presents a thermal assessment of the BAT instrument thermal control system during the first six months in flight.
Technical Paper

The Cryogenic Thermal System Design of NASA’s James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM)

2005-07-11
2005-01-3041
The thermal design and modeling of NASA’s James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) is described. The ISIM utilizes a series of large radiators to passively cool its three near-infrared instruments to below 37 Kelvin. A single mid-infrared instrument is further cooled to below 7 Kelvin via stored solid Hydrogen (SH2). These complex cooling requirements, combined with the JWST concept of a large deployed aperture optical telescope, also passively cooled to below 50 Kelvin, makes JWST one of the most unique and thermally challenging space missions flown to date. Currently in the preliminary design stage and scheduled for launch in 2010, NASA’s JWST is expected to replace the Hubble Space Telescope as the premier space based astronomical observatory.
Technical Paper

Next Generation Space Telescope (NGST) Pathfinder Experiment Inflatable Sunshield in Space (ISIS)

1999-10-19
1999-01-5517
The Next Generation Space Telescope (NGST) design requires a large sunshield to passively cool the telescope and detectors to temperatures in the 60° to 100° Kelvin range. The government yardstick design for the NGST observatory has baselined an inflatable sunshield. The NGST project plans to fly a one-third-scale sunshield during a Shuttle flight in late 2000. The Inflatable Sunshield in Space (ISIS) experiment will demonstrate stable deployment of a large, multilayer thin film sunshield and ridigization of inflatable struts. A new method of modeling large membrane systems will be developed, and data will be obtained in order to validate the model. The flight experiment will also demonstrate the viability of the thermal approach by verifying separation and flatness of membrane layers.
Technical Paper

A Parametric Study of Performance Characteristics of Loop Heat Pipes

1999-07-12
1999-01-2006
A parametric study of performance characteristics of a Loop Heat Pipe (LHP) is presented. A mathematical model, based on the steady-state energy conservation equations, is used. The calculations are performed by varying the operation conditions (heat load, sink and ambient temperatures, and elevation) and the LHP design parameters (working fluid, transport length size, external thermal conductance of the condenser and wick properties). The results are illustrated on LHP performance curves (saturation temperature as a function of applied power). All the results are compared with a baseline configuration to analyze the effects of different parameters. Operating limits due to various constraints such as heat transport limit, capillary pressure limit and the vapor pressure limit are discussed.
Technical Paper

Ground Tests of Capillary Pumped Loop (CAPL 3) Flight Experiment

1998-07-13
981812
The success of CAPL 2 flight experiment has stirred many interests in using capillary pumped loop (CPL) devices for spacecraft thermal control. With only one evaporator in the loop, CAPL 2 was considered a point design for the Earth Observing System (EOS-AM). To realize the full benefits of CPLs, a reliable system with multiple evaporators must be developed and successfully demonstrated in space. The Capillary Pumped Loop (CAPL 3) Flight Experiment was designed to flight demonstrate a multiple evaporator CPL in a space environment. New hardware and concepts were developed for CAPL 3 to enable reliable start-up, constant conductance operation, and heat load sharing. A rigorous ground test program was developed and extensive characterization tests were conducted. All performance requirements were met, and the loop demonstrated very reliable operation.
Technical Paper

Fiber Optic Cable Assemblies for Space Flight Applications: Issues and Remedies

1997-10-01
975592
The following is the first in a series of white papers which will be issued as a result of a task to define and qualify space grade fiber optic cable assemblies. Though to qualify and use a fiber optic cable in space requires treatment of the cable assembly as a system, it is very important to understand the design and behavior of its parts. These papers will address that need, providing information and “lessons learned” that are being collected in the process of procuring, testing and specifying the final assemblies. This installment covers information on optical fiber, coatings, cable components, design guidelines and limitations, radiation and reliability.
Technical Paper

Thermal Design And Performance Of The Space Support Equipment For The Hubble Space Telescope Second Servicing Mission

1997-07-01
972527
New Space Support Equipment (SSE) components developed for the Hubble Space Telescope Second Servicing Mission are described, with particular emphasis on how flight experience from the 1993 First Servicing Mission was utilized in the design and testing process. The new components include the Second Axial Carrier (SAC) Axial Scientific Instrument Protective Enclosure (ASIPE), the magnetic-damped SAC ASIPE Load Isolation System, the Enhanced Power Distribution and Switching Unit (EPDSU), and the Multi-Mission Orbital Replacement Unit Protective Enclosure (MOPE). Analytical modeling predictions are compared with on-orbit data from the Hubble Space Telescope (HST) Second Servicing Mission. Those involved in thermal designs of hardware for use on the Shuttle or Space Station, particularly with astronaut interaction, may find interest in this paper.
Technical Paper

Performance of the CAPL 2 Flight Experiment

1996-07-01
961432
This paper describes flight test results of the CAPL 2 Flight Experiment, which is a full scale prototype of a capillary pumped loop (CPL) heat transport system to be used for thermal control of the Earth Observing System (EOS-AM) instruments. One unique feature of CAPL 2 is its capillary starter pump cold plate design, which consists of a single capillary starter pump and two heat pipes. The starter pump enhances start-up success due to its self-priming capability, and provides the necessary capillary pumping force for the entire loop. The heat pipes provide the required isothermalization of the cold plate. Flight tests included those pertinent to specific EOS applications and those intended for verifying generic CPL operating characteristics and performance limits. Experimental results confirmed that the starter pump was indeed self-priming and the loop could be successfully started every time.
Technical Paper

Hydrodynamic Aspects of Capillary Pumped Loops

1996-07-01
961435
The the past, the design of a Capillary Pumped Loop involved mainly on the thermodynamics and heat transfer aspects of the system. The fluid flow dynamics of the working fluid were deemed benign to the system performance. Recently theoretical and experimental studies have revealed several mechanisms that led to the deprime of the capillary pumps. These mechanisms were all related to the dynamics of the fluid movement inside the loop.
Technical Paper

Design Evolution of the Capillary Pumped Loop (CAPL 2) Flight Experiment

1996-07-01
961431
The Capillary Pumped Loop Flight Experiment (CAPL 2) employs a passive two-phase thermal control system that uses the latent heat of vaporization of ammonia to transfer heat over long distances. CAPL was designed as a prototype of the Earth Observing System (EOS) instrument thermal control systems. The purpose of the mission was to provide validation of the system performance in microgravity, prior to implementation on EOS. CAPL 1 was flown on STS-60 in February, 1994, with some unexpected results related to gravitational effects on two-phase systems. Start-up difficulties on CAPL 1 led to a redesign of the experiment (CAPL 2) and a reflight on STS-69 in September of 1995. The CAPL 2 flight was extremely successful and the new “starter pump” design is now baselined for the EOS application. This paper emphasizes the design history, the CAPL 2 design, and lessons learned from the CAPL program.
Technical Paper

Flight Testing of the Capillary Pumped Loop Flight Experiment

1995-07-01
951566
The Capillary Pumped Loop Flight Experiment (CAPL) employs a passive two-phase thermal control system that uses the latent heat of vaporization of ammonia to transfer heat over long distances. CAPL was designed as a prototype of the Earth Observing System (EOS) instrument thermal control systems. The purpose of the mission was to provide validation of the system performance in micro-gravity, prior to implementation on EOS. CAPL was flown on STS-60 in February, 1994, with some unexpected results related to gravitational effects on two-phase systems. Flight test results and post flight investigations will be addressed, along with a brief description of the experiment design.
Technical Paper

Evaluation of a Reverse Brayton Cycle Heat Pump for Lunar Base Cooling

1994-06-01
941271
This paper explores the possibilities of cooling a permanently inhabited lunar base with a reverse Brayton cycle Thermal Control System (TCS). Based on an initial stage outpost, the cooling needs are defined. A thermodynamic performance model for the Brayton cycle is derived using ideal gas analysis. This model includes inefficiencies and irreversibilities of the components. The free parameters in the thermodynamic model are successively removed using limiting values for efficiencies and determining operating parameters by suboptimizations. In essence a model for cooling efficiency as a function of rejection temperature alone is obtained. For every component of the system a mass model is applied and the overall mass is determined. The last remaining degree of freedom, the rejection temperature, is eliminated by an optimization for lowest overall mass. The result for minimal TCS mass is compared to a reference TCS using a Rankine cycle.
Technical Paper

Thermal Vacuum Testing of the Capillary Pumped Loop Flight Experiment

1994-06-01
941599
The Capillary Pumped Loop Flight Experiment (CAPL) is a prototype of the Earth Observing System (EOS) instrument thermal control systems, which are based on two-phase heat transfer technology. The CAPL experiment has been functionally tested in a thermal vacuum chamber at NASA's Goddard Space Flight Center (GSFC). The tests performed included start-up tests, simulated EOS instrument power profiles, low and high power profiles, a variety of uneven coldplate heating tests, subcooling requirement tests, an induced deprime test, reprimes, saturation temperature changes, and a hybrid (mechanical pump-assist) test. There were a few unexpected evaporator deprimes, but overall the testing was successful. The results of all of the tests are discussed, with emphasis on the deprimes and suspected causes.
X