Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Development of Lightweight Radiators for Lunar Based Power Systems

1994-06-01
941327
This report discusses application of a new lightweight carbon-carbon (C-C) space radiator technology developed under the NASA Civil Space Technology Initiative (CSTI) High Capacity Power Program to a 20 kWe lunar based power system. This system comprises a nuclear (SP-100 derivative) heat source, a Closed Brayton Cycle (CBC) power conversion unit with heat rejection by means of a plane radiator. The new radiator concept is based on a C-C composite heat pipe with integrally woven fins and a thin walled metallic liner for containment of the working fluid. Using measured areal specific mass values (1.5 kg/m2) for flat plate radiators, comparative CBC power system mass and performance calculations show significant advantages if conventional heat pipes for space radiators are replaced by the new C-C heat pipe technology.
Technical Paper

In Operation Detection and Correction of Rotor Imbalance in Jet Engines Using Active Vibration Control

1994-04-01
941151
Jet Engines may experience severe vibration due to the sudden imbalance caused by blade failure. This research investigates employment of on board magnetic bearings or piezolectric actuators to cancel these forces in flight. This operation requires identification of the source of the vibrations via an expert system, determination of the required phase angles and amplitudes for the correction forces, and application of the desired control signals to the magnetic bearings or piezo electric actuators. This paper will show the architecture of the software system, details of the control algorithm used for the sudden imbalance correction project described above, and the laboratory test results.
Technical Paper

Joining of a PdCr Resistance Strain Gauge to Inconel 718 Using an Infrared Process

1994-04-01
941201
Joining of a PdCr Strain Gage with a Hastelloy X carrier shim to Inconel by a rapid infrared processing technique has been investigated at 1150 °C using a nickel based brazing alloy AMS 4777, Ni-7Cr-3Fe-3.2B-4.5Si-.06C in wt%. The effects of the infrared joining parameters on the joint and base material microstructure, joint shear strength, and delamination tendency of the PdCr gage was investigated. Results show that the joint shear strength is as high as 503 MPa when processed at approximately 1150 °C for 120 seconds. Microstructural examinations of the joint with both an optical microscope and a scanning electron microscope indicate that good wetting exists between the brazing alloy with both the Hastelloy X and Inconel 718. And, the Hastelloy X and Inconel 718 exhibits no noticeable change in microstructure due to the rapid processing cycle of the infrared heating process while the stabilized PdCr wire gage shows little change in resistance.
Technical Paper

Ceramic Composites Portend Long Turbopump Lives

1993-04-01
931372
Use of continuous fiber reinforced ceramic matrix composites (FRCMC) for turbopump hot section components offers a number of benefits. The performance benefits of increased turbine inlet temperature are apparent and readily quantifiable. Perhaps less obvious are the potential benefits of increased component life. At nominal turbopump operating conditions, FRCMC offer increased operating temperature margin relative to conventional materials. This results in potential for significant life enhancement. Other attributes (e.g., thermal shock resistance and high cycle fatigue endurance) of FRCMC provide even greater potential to improve life and reduce maintenance requirements. Silicon carbide (Sic) matrix composites with carbon fibers (C/SiC) do not degrade when exposed to hydrogenrich steam for 10 hours at 1200°C. This FRCMC is resistant to thermal shock transients far in excess of those anticipated for advanced, high temperature turbomachinery.
Technical Paper

Dynamic Isotope Power System Design Considerations for Human Exploration of the Moon and Mars

1992-08-03
929483
To support the Space Exploration Initiative, studies were performed to investigate and characterize Dynamic Isotope Power System (DIPS) alternatives for the surface mission elements associated with a lunar base and subsequent manned Mars expedition. A key part of this characterization was to determine how the mission environment affects system design. The impact of shielding to provide astronaut protection from power system radiation was also examined. Impacts of mission environment and shielding were examined for two representative DIPS types (closed Brayton cycle and Stirling cycle converters). Mission environmental factors included: (1) thermal background; (2) dust and atmospheric corrosion; (3) meteoroid damage; and (4) presence of an atmosphere on Mars. Physical effects of these factors on thermal power systems were identified and their parametric range associated with the mission and mission environment were determined.
Technical Paper

Development of Advanced Seals for Space Propulsion Turbomachinery

1992-04-01
921028
Current activities in seals for space propulsion turbomachinery that the NASA Lewis Research Center sponsors are surveyed. The overall objective is to provide the designer and the researcher with the concepts and the data to control seal dynamics and leakage. Included in the program are low-leakage seals, such as the brush seal, the “ceramic rope” seal, low-leakage seals for liquid oxygen turbopumps, face seals for two-phase flow, and swirl brakes for stability. Two major efforts are summarized: a study of seal dynamics in rotating machinery and an effort in seals code development.
Technical Paper

Experimental Evaluation of Corner Vanes-Summary

1987-10-01
871784
Two types of turning vane airfoils (a controlled-diffusion shape and a circular-arc shape) have been evaluated in the high-speed and fan-drive corners of a 0.1-scale model of NASA Lewis Research Center's proposed Altitude Wind Tunnel. The high-speed corner was evaluated with and without a simulated engine exhaust removal scoop. The fan-drive corner was evaluated with and without the high-speed corner. Flow surveys of pressure and flow angle were taken for both the corners and the vanes to determine their respective losses. The two-dimensional vane losses were low; however, the overall corner losses were higher because three-dimensional flow was generated by the complex geometry resulting from intersection of the turning vanes with the end wall. The three-dimensional effects were especially pronounced in the outer region of the circular corner.
Technical Paper

An Overview of the NASA Rotary Engine Research Program

1984-08-01
841018
This paper presents a brief overview and technical highlights of the research efforts and studies on rotary engines over the last several years at the NASA Lewis Research Center. The review covers the test results obtained from turbocharged rotary engines and preliminary results from a high performance single-rotor engine. Combustion modeling studies of the rotary engine and the use of a Laser Doppler Velocimeter to confirm the studies are discussed. An in-house program in which a turbocharged rotary engine was installed in a Cessna Skymaster for ground test studies is also covered. Details are presented on single-rotor stratified-charge rotary engine research efforts, both in-house and on contract.
Technical Paper

An Overview of General Aviation Propulsion Research Programs at NASA-Lewis Research Center

1981-04-01
810624
This paper presents a brief overview and technical highlights of general aviation (g/a) propulsion research efforts and studies which have been underway at NASA's Lewis Research Center (LeRC) for the past several years. The review covers near-term improvements for current-type piston engines, as well as studies and limited corroborative research on several advanced g/a engine concepts, including diesels, small turboprops and both piston and rotary stratified-charge engines. Also described is basic combustion research, cycle modeling and diagnostic instrumentation work that will be required to make the new engines a reality. The discussion emphasizes the most recently-completed studies and the basic underlying research work, which have not been reported previously.
Technical Paper

Cyclic Structural Analyses of Air-Cooled Gas Turbine Blades and Vanes

1976-02-01
760918
The creep-fatigue behavior of a fully impingement-cooled blade for four cyclic cases was analyzed by using the Elas 55, finite-element, nonlinear structural computer program. Expected cyclic lives were calculated by using the method of Strainrange Partitioning for reversed inelastic strains and time fractions for ratcheted tensile creep strains. Strainrange Partitioning was also applied to previous results from a one-dimensional cyclic analysis of a film-impingement-cooled vane. The analyses indicated that Strainrange Partitioning is more applicable to a constrained airfoil such as the film-impingement-cooled vane than to the relatively unconstrained fully impingement-cooled airfoil. STAR category 39
X