Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Application of Colorimetric Solid Phase Extraction (C-SPE) to Monitoring Nickel(II) and Lead(II) in Spacecraft Water Supplies

2004-07-19
2004-01-2539
Archived water samples collected on the International Space Station (ISS) and returned to Earth for analysis have, in a few instances, contained trace levels of heavy metals. Building on our previous advances using Colorimetric Solid Phase Extraction (C-SPE) as a biocide monitoring technique [1, 2], we are devising methods for the low level monitoring of nickel(II), lead(II) and other heavy metals. C-SPE is a sorption-spectrophotometric platform based on the extraction of analytes onto a membrane impregnated with a colorimetric reagent that are then quantified on the surface of the membrane using a diffuse reflectance spectrophotometer. Along these lines, we have analyzed nickel(II) via complexation with dimethylglyoxime (DMG) and begun to examine the analysis of lead(II) by its reaction with 2,5-dimercapto-1, 3, 4-thiadiazole (DMTD) and 4-(2-pyridylazo)-resorcinol (PAR).
Technical Paper

ISS Potable Water Sampling and Chemical Analysis: Expeditions 4 & 5

2003-07-07
2003-01-2401
The International Space Station (ISS) drinking water supply consists of water recovered from humidity condensate, water transferred from Shuttle, and groundwater supplied from Russia. The water is dispensed from both the stored water dispensing system (SVO-ZV) and the condensate recovery system (SRV-K) galley. Teflon bags are used periodically to collect potable water samples, which are then transferred to Shuttle for return to Earth. The results from analyses of these samples are used to monitor the potability of the drinking water on board and evaluate the efficiency of the water recovery system. This report provides results from detailed analyses of samples of ISS recovered potable water, Shuttle-supplied water, and ground-supplied water taken during ISS Expeditions 4 and 5. During Expedition 4, processing of U.S. Lab condensate through the Russian condensate recovery system was initiated. Results indicate water recovered from both Service Module and U.S.
Technical Paper

A Rapid Method for Determining Biocide Concentration in a Spacecraft Water Supply

2002-07-15
2002-01-2535
Monitoring and maintaining biocide concentrations is vital for assuring safe drinking water both in ground and spacecraft applications. Currently, there are no available methods to measure biocide concentrations (i.e., silver ion or iodine) on-orbit. Sensitive, rapid, simple colorimetric methods for the determination of silver(I) and iodine are described. The apparatus consists of a 13-mm extraction disk (Empore® membrane) impregnated with a colorimetric reagent and placed in a plastic filter holder. A Luer tip syringe containing the aqueous sample is attached to the holder and 10 mL of sample is forced through the disk in ∼30 s. Silver(I) is retained by a disk impregnated with 5-(p-dimethylaminobenzylidene)-rhodanine (DMABR), and iodine is retained as a yellow complex on a membrane impregnated with polyvinylpyrrolidone (PVP).
Technical Paper

Identification of an Organic Impurity Leaching from a Prototype ISS Water Container

2001-07-09
2001-01-2125
Collapsible bladder tanks called Contingency Water Containers (CWCs) have been used to transfer water from the Shuttle to the Mir and the International Space Station (ISS). Because their use as potable water storage on the ISS is planned for years, efforts are underway to improve the containers, including the evaluation of new materials. Combitherm®, a multi-layer plastic film, is a material under evaluation for use as the CWC bag material. It consists of layers of linear low density polyethylene, ethylene-vinyl alcohol copolymer, nylon, and a solvent- free adhesive layer. Long term studies of the quality of water stored in Combitherm bladders indicate a gradual but steady increase in the total organic carbon value. This suggests a leaching or breakdown of an organic component of the Combitherm.
Technical Paper

International Space Station Radiation Shielding Model Development

2001-07-09
2001-01-2370
The projected radiation levels within the International Space Station (ISS) have been criticized by the Aerospace Safety Advisory Panel in their report to the NASA Administrator. Methods for optimal reconfiguration and augmentation of the ISS shielding are now being developed. The initial steps are to develop reconfigurable and realistic radiation shield models of the ISS modules, develop computational procedures for the highly anisotropic radiation environment, and implement parametric and organizational optimization procedures. The targets of the redesign process are the crew quarters where the astronauts sleep and determining the effects of ISS shadow shielding of an astronaut in a spacesuit. The ISS model as developed will be reconfigurable to follow the ISS. Swapping internal equipment rack assemblies via location mapping tables will be one option for shield optimization.
Technical Paper

Anatomical Modeling Considerations for Calculating Organ Exposures in Space

2000-07-10
2000-01-2412
Typical calculations of radiation exposures in space approximate the composition of the human body by a single material, typically Aluminum or water. A further approximation is made with regard to body size by using a single anatomical model to represent people of all sizes. A comparison of calculations of organ dose and dose-equivalent is presented. Calculations are first performed approximating body materials by water equivalent thickness', and then using a more accurate representation of materials present in the body. In each case of material representation, a further comparison is presented of calculations performed modeling people of different sizes.
Technical Paper

Toxicological Assessment of Sealed Spacecraft Modules

1999-07-12
1999-01-2055
Spacecraft modules that are last purged with clean air several months before they are entered by humans on orbit require careful management. The crew must not be exposed to harmful concentrations of air pollutants when they first enter. The magnitude of the pollution the crew will encounter depends on the volume of the module, the length of time since the last clean-air purge or scrub, the inherent offgassing rate of the materials in the module, the interior temperature of the module while offgassing occurs, and the system leak rate. The time of the last module purge or scrub can be several months before crew entry, so it is essential that the offgassing rate within the module be measured over a suitable interval of time to estimate pollution levels with confidence. Air samples were taken from the STS-74 Russian Docking Module, the STS-79 Spacehab, and the ISS Node 1 prior to launch to predict pollution levels at crew first entry.
Technical Paper

Chemical Analysis of Potable Water and Humidity Condensate: Phase One Final Results and Lessons Learned

1999-07-12
1999-01-2028
Twenty-nine recycled water, eight stored (ground-supplied) water, and twenty-eight humidity condensate samples were collected on board the Mir Space Station during the Phase One Program (1995-1998). These samples were analyzed to determine potability of the recycled and ground-supplied water, to support the development of water quality monitoring procedures and standards, and to assist in the development of water reclamation hardware. This paper describes and summarizes the results of these analyses and lists the lessons learned from this project. Results show that the recycled water and stored water on board Mir, in general, met NASA, Russian Space Agency (RSA), and U.S. Environmental Protection Agency (EPA) standards.
Technical Paper

Chemical Analysis and Water Recovery Testing of Shuttle-Mir Humidity Condensate

1999-07-12
1999-01-2029
Humidity condensate collected and processed in-flight is an important component of a space station drinking water supply. Water recovery systems in general are designed to handle finite concentrations of specific chemical components. Previous analyses of condensate derived from spacecraft and ground sources showed considerable variation in composition. Consequently, an investigation was conducted to collect condensate on the Shuttle while the vehicle was docked to Mir, and return the condensate to Earth for testing. This scenario emulates an early ISS configuration during a Shuttle docking, because the atmospheres intermix during docking and the condensate composition should reflect that. During the STS-89 and STS-91 flights, a total volume of 50 liters of condensate was collected and returned. Inorganic and organic chemical analyses were performed on aliquots of the fluid.
Technical Paper

A Vibro-Acoustic Test System for Simulation of Saturn V Dynamic Launch Environment on Major Space Vehicle Structures

1967-02-01
670583
A description of the largest Acoustic and Vibration Test Facilities in existence for the simulation of major launch vehicle dynamic environment is given and the operational characteristics of both are discussed. Sinusoidal and random excitation techniques are described and unique vibration control methods presented. A comparison of the effects of vibration and acoustic excitation on major space vehicle structures is made.
X