Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

A Study of Air/Fuel Integrated Thermal Management System

2015-09-15
2015-01-2419
This paper describes the concept of an air/fuel integrated thermal management system, which employs the VCS (Vapor Cycle System) for the refrigeration unit of the ECS (Environment Control System), while exchanging the heat between the VCS refrigerant and the fuel into the engine, and presents a feasibility study to apply the concept to the future all electric aircraft systems. The heat generated in an aircraft is transferred to the ECS heat exchanger by the recirculation of air and exhausted into the ram air. While some aircraft employ the fluid heat transfer loop, the transferred heat is exhausted into the ram air. The usage of ram air for the cooling will increase the ram drag and the fuel consumption, thus, less usage of ram air is preferable. Another source for heat rejection is the fuel. The heat exchange with the fuel does not worsen the fuel consumption, thus, the fuel is a preferable source.
Technical Paper

Study of VCS Design for Energy Optimization of Non-Bleed Electric Aircraft

2014-09-16
2014-01-2225
To improve an energy optimization issue of ECS for MEA, we propose our concept in which ACS is replaced with VCS. A VCS is generally evaluated as auxiliary or limited cooling system of an aircraft. Cooling demand of commercial aircraft usually becomes large due to ventilation air at hot day conditions. In case of using conventional VCS for whole cooling demand, the ECS becomes too heavy as aircraft equipment. Though ACS's light weight is advantageous, the issue that VCS will be available for aircraft ECS is important for saving energy. ECS of commercial aircraft should work for three basic functions, i.e. pressurization, ventilation, and temperature control. The three functions of the ECS for bleed-less type of MEA can be distributed among equipment of the ECS. MDFAC works for pressurization and ventilation. Therefore, we should select appropriate system for only temperature control.
Technical Paper

Power Management System for the Electric Taxiing System Incorporating the More Electric Architecture

2013-09-17
2013-01-2106
With airlines increasingly directing their attention to operating costs and environmental initiatives, the More Electric Architecture for Aircraft and Propulsion (MEAAP) is emerging as a viable solution for improved performance and eco-friendly aircraft operations. This paper focuses on electric taxiing that does not require the use of jet engines or the auxiliary power unit (APU) during taxiing, either from the departure gate to take-off or from landing to the arrival gate. Many researchers and engineers are considering introducing electric taxiing systems as part of efforts to improve airport conditions. To help cut aircraft emissions at airports, MEAAP seeks to introduce an electric taxiing system that would reduce the duration for which engines and APUs operate while on the ground. Given this goal, the aircraft electrical system deployed for use at airports must rely on a power source other than the jet engines or APU.
Technical Paper

More Electric Architecture for Engine and Aircraft Fuel System

2013-09-17
2013-01-2080
The authors are currently developing the MEE (More Electric Engine) electric motor-driven fuel pump system for aircraft engines. The electric fuel system will contribute to the reduction of engine power extraction to drive the fuel pump; thus, an improvement in engine efficiency will be expected. In addition, the engine system reliability will be improved by introducing advanced electric architecture, and the reduction of hydraulic components, fuel tubes and fittings is effective to enhance the maintainability of the engine. Although it is considered that the MEE electric fuel system will realize several benefits, there are technical challenges to introduce such new electric system into aircraft. One of the key technical challenges is to construct a redundant and simplified electric fuel system, because continuous operation of the fuel pump system is crucial for aircraft safety.
Technical Paper

Fuel Pump System Configuration for the More Electric Engine

2011-10-18
2011-01-2563
This paper describes study for fuel pump system configuration which is suitable for the MEE (More Electric Engine) system. The MEE is a new engine system concept which intends engine efficiency improvement, which results in a reduction of engine fuel burn and CO₂ emissions from aircraft. Final configuration of the MEE will contain various engine systems, such as fuel system, oil system and electric generating system, but we focus on high efficiency fuel systems as a first step of the MEE development. The MEE is an advanced engine control technology utilizing recent innovations in electric motors and power electronics and replacing conventional engine accessories, such as AGB-driven pumps and hydraulic actuators with electric motor-driven pumps and EMAs (Electro-Mechanical Actuators), which are powered by generators. Because fuel pump system configuration is a key for the MEE fuel system, we conducted comparison of several pump systems and adopted a fixed displacement gear pump system.
X