Refine Your Search

Topic

Search Results

Journal Article

Experimental Analysis of Kerf Characteristics of Carbon Fiber-Reinforced Polymer with Abrasive Water Jet Machining

2024-05-01
Abstract This research looks into how abrasive water jet machining (AWJM) can be used on carbon fiber-reinforced polymer (CFRP) materials, specifically how the kerf characteristics change with respect to change in process parameters. We carefully looked into four important process parameters: stand-off distance (SOD), water pressure (WP), traverse rate (TR), and abrasive mass flow rate (AMFR). The results showed that as SOD goes up, the kerf taper angle goes up because of jet dispersion, but as WP goes up, the angle goes down because jet kinetic energy goes up. The TR was directly related to the kerf taper angle, but it made the process less stable. The kerf drop angle was not greatly changed by AMFR. When it came to kerf top width, SOD made it wider, WP made it narrower, TR made it narrower, and AMFR made it a little wider. When the settings (SOD: 1 mm, WP: 210 MPa, TR: 150 mm/min, AMFR: 200 g/min) were optimized, the kerf taper angle and kerf top width were lowered.
Journal Article

Longitudinal Air-Breathing Hypersonic Vehicle Nonlinear Dynamic Simulation with Different Control Inputs

2024-03-04
Abstract The air-breathing hypersonic vehicle (AHV) holds the potential to revolutionize global travel, enabling rapid transportation to low-Earth orbit and even space within the next few decades. This study focuses on investigating the nonlinear dynamic simulation, trim, and stability analysis of a three-degrees-of-freedom (3DOF) longitudinal model of a generic AHV for variable control surface deflection, δe and δr. A simulation is developed to analyze the burstiness of the AHV’s nonlinear longitudinal behavior, considering the complete flight envelope across a wide range of Mach numbers, from M = 0 to 24, for selected stable M. The presented simulation assesses trim analysis and explores the dynamic stability of the AHV through its flight envelope and bifurcation method analysis is carried out to gain insight and validate the dynamic stability using eigen value approach.
Journal Article

Experimental Investigation of a Flexible Airframe Taxiing Over an Uneven Runway for Aircraft Vibration Testing

2024-03-01
Abstract The ground vibration test (GVT) is an important phase in a new aircraft development program, or the structural modification of a certified aircraft, to experimentally determine the structural vibrational modes of the aircraft and their modal parameters. These modal parameters are used to validate and correlate the dynamic finite element model of the aircraft to predict potential structural instabilities (such as flutter), assessing the significance of modifications to research vehicles by comparing the modal data before and after the modification and helping to resolve in-flight anomalies. Due to the high cost and the extensive preparations of such tests, a new method of vibration testing called the taxi vibration test (TVT) rooted in operational modal analysis (OMA) was recently proposed and investigated as an alternative method to conventional GVT.
Journal Article

Designing an Uncrewed Aircraft Systems Control Model for an Air-to-Ground Collaborative System

2024-02-19
Abstract In autonomous technology, uncrewed aircraft systems have already become the preferred platform for the research and development of flight control systems. Although they are subjected to following and satisfying complicated scenarios of control stations, this high dependency on a specific control framework limits them in their application process and reduces the flight self-organizing network. In this article, we present a developed multilayer control system protocol with the additional supportive manned aircraft layer (Tender). The novelty of the introduced model is that uncrewed aircraft systems are monitored and navigated by the tender, and then based on the suggested scheme, data flows are controlled and transferred across the network by the developed cloud–robotics approach in the ground station layer.
Journal Article

Aircraft Cockpit Window Improvements Enabled by High-Strength Tempered Glass

2024-01-25
Abstract This research was initiated with the goal of developing a significantly stronger aircraft transparency design that would reduce transparency failures from bird strikes. The objective of this research is to demonstrate the fact that incorporating high-strength tempered glass into cockpit window constructions for commercial aircraft can produce enhanced safety protection from bird strikes and weight savings. Thermal glass tempering technology was developed that advances the state of the art for high-strength tempered glass, producing 28 to 36% higher tempered strength. As part of this research, glass probability of failure prediction methodology was introduced for determining the performance of transparencies from simulated bird impact loading. Data used in the failure calculation include the total performance strength of highly tempered glass derived from the basic strength of the glass, the temper level, the time duration of the load, and the area under load.
Journal Article

Optimizing Intralogistics in an Engineer-to-Order Enterprise with Job Shop Production: A Case Study of the Control Cabinet Manufacturing

2024-01-16
Abstract This study underscores the benefits of refining the intralogistics process for small- to medium-sized manufacturing businesses (SMEs) in the engineer-to-order (ETO) sector, which relies heavily on manual tasks. Based on industrial visits and primary data from six SMEs, a new intralogistics concept and process was formulated. This approach enhances the value-added time of manufacturing workers while also facilitating complete digital integration as well as improving transparency and traceability. A practical application of this method in a company lead to cutting its lead time by roughly 11.3%. Additionally, improved oversight pinpointed excess inventory, resulting in advantages such as reduced capital needs and storage requirements. Anticipated future enhancements include better efficiency from more experienced warehouse staff and streamlined picking methods. Further, digital advancements hold promise for cost reductions in administrative and supportive roles.
Journal Article

Designing Manual Workplace Systems in Engineer-to-Order Enterprises to Improve Productivity: A Kano Analysis

2024-01-16
Abstract Being an engineer-to-order (ETO) operating industry, the control cabinet industry faces difficulties in process and workplace optimizations due to changing requirements and lot size one combined with volatile orders. To optimize workplaces for employees, current literature is focusing on ergonomic designs, providing frameworks to analyze workplaces, leaving out the optimal design for productivity. This work thus utilizes a Kano analysis, collecting empirical data to identify essential design requirements for assembly workplaces, incorporating input from switchgear manufacturing employees. The results emphasize the need for a balance between ergonomics and efficiency in workplace design. Surprisingly, few participants agree on the correlation between improved processes and workspaces having a positive impact on their well-being and product quality.
Journal Article

Peculiarities of the Design of Housing Parts of Large Direct Current Machines

2023-12-23
Abstract In the given work the design and stress–strain calculation of housing parts of large machines during operation are considered. At the same time, both classical electromagnetic forces and technological operations necessary for mechanical processing and assembly of such objects as well as transportation processes are taken into account for the first time. The task of analyzing of the stress–strain state of the framework was solved in the three-dimensional setting using the finite element method by the SolidWorks software complex. The three-dimensional analysis of the stress–strain state of the structure for technological operations, namely tilting, lifting, and moving the large DC machines frame without poles and with poles, showed that the values of mechanical stresses that arise in the connections of the frame exceed the permissible limits, resulting in significant deformation of the structure.
Journal Article

Material Recognition Technology of Internal Loose Particles in Sealed Electronic Components Based on Random Forest

2023-12-05
Abstract Sealed electronic components are the basic components of aerospace equipment, but the issue of internal loose particles greatly increases the risk of aerospace equipment. Traditional material recognition technology has a low recognition rate and is difficult to be applied in practice. To address this issue, this article proposes transforming the problem of acquiring material information into the multi-category recognition problem. First, constructing an experimental platform for material recognition. Features for material identification are selected and extracted from the signals, forming a feature vector, and ultimately establishing material datasets. Then, the problem of material data imbalance is addressed through a newly designed direct artificial sample generation method. Finally, various identification algorithms are compared, and the optimal material identification model is integrated into the system for practical testing.
Journal Article

Optimization of Takeaway Delivery Based on Large Neighborhood Search Algorithm

2023-11-09
Abstract The drone logistics distribution method, with its small size, quick delivery, and zero-touch, has progressively entered the mainstream of development due to the global epidemic and the rapidly developing global emerging logistics business. In our investigation, a drone and a delivery man worked together to complete the delivery order to a customer’s home as quickly as possible. We realize the combined delivery network between drones and delivery men and focus on the connection and scheduling between drones and delivery men using existing facilities such as ground airports, unmanned stations, delivery men, and drones. Based on the dynamic-vehicle routing problem model, the establishment of a delivery man and drone with a hybrid model, in order to solve the tarmac unmanned aerial vehicle for take-out delivery scheduling difficulties, linking to the delivery man and an adaptive large neighborhood search algorithm solves the model.
Journal Article

A Study on Secured Unmanned Aerial Vehicle-Based Fog Computing Networks

2023-11-03
Abstract With the recent advancement in technologies, researchers worldwide have a growing interest in unmanned aerial vehicles (UAVs). The last few years have been significant in terms of its global awareness, adoption, and applications across industries. In UAV-aided wireless networks, there are some limitations in terms of power consumption, data computation, data processing, endurance, and security. So, the idea of UAVs and Edge or Fog computing together deals with the limitations and provides intelligence at the network’s edge, which makes it more valuable to use in emergency applications. Fog computing distributes data in a decentralized way and blockchain also works on the principle of decentralization. Blockchain, as a decentralized database, uses cryptographic methods including hash functions and public key encryption to secure the user information. It is a prominent solution to secure the user’s information in blocks and maintain privacy.
Journal Article

TOC

2023-10-24
Abstract TOC
Journal Article

Determination of the Heat-Controlled Accumulator Volume for the Two-Phase Thermal Control Systems of Spacecraft

2023-09-29
Abstract For spacecraft with high power consumption, it is reasonable to build the thermal control system based on a two-phase mechanically pumped loop. The heat-controlled accumulator is a key element of the two-phase mechanically pumped loop, which allows for the control of pressure in the loop and maintains the required level of coolant boiling temperature or cavitation margin at the pump inlet. There can be two critical modes of loop operation where the ability to control pressure will be lost. The first critical mode occurs when the accumulator fills with liquid at high heat loads. The second critical mode occurs when the accumulator is at low heat loads and partial loss of coolant, for example, due to the leak caused by micrometeorite breakdown. Both modes are caused by insufficient accumulator volume or working fluid charge.
Journal Article

Experimental and Numerical Investigation of Combustion and Noise, Vibrations, and Harshness Emissions in a Drone Jet Engine Fueled with Synthetic Paraffinic Kerosene

2023-08-14
Abstract Emissions and effects of climate change have prompted study into fuels that reduce global dependence on traditional fuels. This study seeks to investigate engine performance, thermochemical properties, emissions, and perform NVH analysis of Jet-A and S8 using a single-stage turbojet engine at three engine speeds. Experimental Jet-A results were used to validate a CFX simulation of the engine. Engine performance was quantified using thermocouples, pressure sensors, tachometers, flow meters, and load cells fitted to the engine. Emissions results were collected using an MKS Multigas Emissions Analyzer that examined CO, CO₂, H₂O, NOx, and THC. NVH analysis was conducted using a multifield, free-field microphone, and triaxial accelerometer. This study found that Jet-A operates at higher temperatures and pressures than S8, and S8 requires higher fuel flow rates than Jet-A, leading to poorer efficiency and thrust. S8 produced stronger vibrations over 5 kHz compared to Jet-A.
Journal Article

Nonlinear Observer for Estimating Gravity Vector and Flight Path Angles of a High-Performance Aircraft

2023-08-14
Abstract This paper proposes a nonlinear observer for the estimation of gravity vector and angles with respect to velocity vector (flight path angle, bank angle) of a high-performance aircraft. The technique is computationally simpler than the extended Kalman filter (EKF) and hence is suitable for onboard implementations when the digital flight control computer (DFCC) has computational burdens. Flight test data of a highly maneuvering flight such as wind-up turns and full rolls have been used to validate the technique.
Journal Article

Recognition Method for Electronic Component Signals Based on LR-SMOTE and Improved Random Forest Algorithm

2023-06-10
Abstract Loose particles are a major problem affecting the performance and safety of aerospace electronic components. The current particle impact noise detection (PIND) method used in these components suffers from two main issues: data collection imbalance and unstable machine-learning-based recognition models that lead to redundant signal misclassification and reduced detection accuracy. To address these issues, we propose a signal identification method using the limited random synthetic minority oversampling technique (LR-SMOTE) for unbalanced data processing and an optimized random forest (RF) algorithm to detect loose particles. LR-SMOTE expands the generation space beyond the original SMOTE oversampling algorithm, generating more representative data for underrepresented classes. We then use an RF optimization algorithm based on the correlation measure to identify loose particle signals in balanced data.
Journal Article

A Literature Review of Simulation Fidelity for Autonomous-Vehicle Research and Development

2023-05-25
Abstract This article explores the value of simulation for autonomous-vehicle research and development. There is ample research that details the effectiveness of simulation for training humans to fly and drive. Unfortunately, the same is not true for simulations used to train and test artificial intelligence (AI) that enables autonomous vehicles to fly and drive without humans. Research has shown that simulation “fidelity” is the most influential factor affecting training yield, but psychological fidelity is a widely accepted definition that does not apply to AI because it describes how well simulations engage various cognitive functions of human operators. Therefore, this investigation reviewed the literature that was published between January 2010 and May 2022 on the topic of simulation fidelity to understand how researchers are defining and measuring simulation fidelity as applied to training AI.
Journal Article

Prediction of Surface Finish on Hardened Bearing Steel Machined by Ceramic Cutting Tool

2023-05-17
Abstract Prediction of the surface finish of hardened bearing steels was estimated in machining with ceramic uncoated cutting tools under various process parameters using two statistical approaches. A second-order (quadratic) regression model (MQR, multiple quantile regression) for the surface finish was developed and then compared with the artificial neural network (ANN) method based on the coefficient determination (R 2), root mean square error (RMSE), and percentage error (PE). The experimental results exhibited that cutting speed was the dominant parameter, but feed rate and depth of cut were insignificant in terms of the Pareto chart and analysis of variance (ANOVA). The optimum surface finish in machining bearing steel was achieved at 100 m/min speed, 0.1 mm/revolution (rev) feed rate, and 0.6 mm depth of cut.
Journal Article

Investigation of In-Cylinder Pressure Measurement Methods within a Two-Stroke Spark Ignition Engine

2023-05-12
Abstract This work describes an investigation of measurement techniques for the indicated mean effective pressure (IMEP) on a 55 cc single-cylinder, 4.4 kW, two-stroke, spark ignition (SI) engine intended for use on Group 1 and Group 2 remotely piloted aircraft (RPAs). Three different sensors were used: two piezoelectric pressure transducers (one flush mount and one measuring spark plug) for measuring in-cylinder pressure and one capacitive sensor for determining the top dead center (TDC) position of the piston. The effort consisted of three objectives: to investigate the merits of a flush mount pressure transducer compared to a pressure transducer integrated into the spark plug, to perform a parametric analysis to characterize the effect of the variability in the engine test bench controls on the IMEP, and to determine the thermodynamic loss angle for the engine.
Journal Article

The Influence of Carbon Fiber Composite Specimen Design Parameters on Artificial Lightning Strike Current Dissipation and Material Thermal Damage

2023-04-29
Abstract Previous artificial lightning strike direct effect research has examined a broad range of specimen design parameters. No works have studied how such specimen design parameters and electrical boundary conditions impact the dissipation of electric current flow through individual plies. This article assesses the influence of carbon fiber composite specimen design parameters (design parameters = specimen size, shape, and stacking sequence) and electrical boundary conditions on the dissipation of current and the spread of damage resulting from Joule heating. Thermal-electric finite element (FE) modelling is used and laboratory scale (<1 m long) and aircraft scale (>1 m long) models are generated in which laminated ply current dissipation is predicted, considering a fixed artificial lightning current waveform. The simulation results establish a positive correlation between the current exiting the specimen from a given ply and the amount of thermal damage in that ply.
X