Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Towards the Design-driven Carbon Footprint reduction of Composite Aerospace and Automotive components: An overview

2024-06-12
2024-37-0032
Composite materials, pioneered by aerospace engineering due to their lightweight, strength, and durability properties, are increasingly adopted in the high-performance automotive sector. Besides the acknowledged composite components’ performance, enabled lightweighting is becoming even more crucial for energy efficiency, and therefore emissions along vehicle use phase from a decarbonization perspective. However, their use entails energy-intensive and polluting processes involved in raw material production, in manufacturing processes, and, in particular, in end-of-life disposal. Carbon footprint is the established indicator to assess the environmental impact of climate-changing factors on products or services. Research on different carbon footprint sources reduction is increasing, and even the European Composites Industry Association is demanding the development of specific Design for Sustainability approaches.
Technical Paper

Choosing the Best Lithium Battery Technology in the Hybridization of Ultralight Aircraft

2024-06-12
2024-37-0017
Many research centers and companies in general aviation have been devoting efforts to the electrification of propulsive plants to reduce environmental impact and/or increase safety. Even if the final goal is the elimination of fossil fuels, the limitations of today's battery in terms of energy and power densities suggest the adoption of hybrid-electric solutions that combine the advantages of conventional and electric propulsive systems, namely reduced fuel consumption, high peak power, and increased safety deriving from redundancy. Today, lithium batteries are the best commercial option for the electrification of all means of transportation. However, lithium batteries are a family of technologies that presents a variety of specifications in terms of gravimetric and volumetric energy density, discharge and charge currents, safety, and cost.
Technical Paper

Generating Reduced-Order Image Data and Detecting Defect Map on Structural Components using Ultrasonic Guided Wave Scan

2024-06-01
2024-26-0416
The paper presents a theoretical framework for the detection and first-level preliminary identification of potential defects on aero-structure components while employing ultrasonic guided wave based structural health monitoring strategies, systems and tools. In particular, we focus our study on ground inspection using laser-Doppler scan of surface velocity field, which can also be partly reconstructed or monitored using point sensors and actuators on-board structurally integrated. Using direct wave field data, we first question the detectability of potential defects of unknown location, size, and detailed features. Defects could be manufacturing defects or variations, which may be acceptable from design and qualification standpoint; however, those may cause significant background signal artifacts in differentiating structure progressive damage or sudden failure like impact-induced damage and fracture.
Technical Paper

Enhancing Sustainable Aviation through Contrail Management – A Framework for Multiple Platforms

2024-06-01
2024-26-0444
Effective contrail management while ensuring operational and economic efficiencies for flight services is essential for providing services with minimal adverse environmental impact. The paper explores various aspects of contrail management applicable to different platforms such as Unmanned vehicles, Commercial airliners and Business & regional jets. The aspects unique to each platform such as flight levels of operation, fuel types, flight endurance and radius of operation have been analyzed. Expanse of 5G network is resulting in increased flight activity at flight levels not envisaged hitherto. The paper also dwells on the ramifications of the increased proliferation of different platforms at newer flight levels from the perspective of contrail management.
Technical Paper

Sustainable Microalgae-Membrane Photobioreactor (MPBR) System for Onboard Oxygen Production in an Aircraft

2024-06-01
2024-26-0402
The purpose of the Air Generation System is to provide a constant supply of conditioned fresh air to meet the necessary oxygen availability and to prevent carbon dioxide (CO2) concentrations for the occupants in an aircraft. The engine bleed energy or electrical load energy consumed towards this circumstance accounts to be approx. 5% of total fuel burn and in turn, contributes to the global emissions of greenhouse gases. This paper studies the improvement areas of the present conventional system such as fuel burn consumption associated with an aircraft environmental control system (ECS) depending on, the amount of bleed and ram air usage, electric power consumption. Improved systems for propulsion, power generation, sustainability, hybridization, and environmental control can be desirable for an aircraft.
Technical Paper

Energy Consumption in Lightweight Electric Aircraft

2024-06-01
2024-26-0403
Electric aircraft have emerged as a promising solution for sustainable aviation, aiming to reduce greenhouse gas emissions and noise pollution. Efficiently estimating and optimizing energy consumption in these aircraft is crucial for enhancing their design, operation, and overall performance. This paper presents a novel framework for analyzing and modeling energy consumption patterns in lightweight electric aircraft. A mathematical model is developed, encompassing key factors such as aircraft weight, velocity, wing area, air density, coefficient of drag, and battery efficiency. This model estimates the total energy consumption during steady-level flight, considering the power requirements for propulsion, electrical systems, and auxiliary loads. The model serves as the foundation for analyzing energy consumption patterns and optimizing the performance of lightweight electric aircraft.
Technical Paper

Analytical and Experimental Evaluation of Seal Drag using Variety of Different Fluids

2024-06-01
2024-26-0423
The present study discusses about the determination of the Seal drag force in the application where elastomeric seal is used with metallic interface in the presence of different fluids. An analytical model was constructed to predict the seal drag force and experimental test was performed to check the fidelity of the analytical model. A Design of Experiment (DoE) was utilized to perform experimental test considering different factors affecting the Seal drag force. Statistical tools such as Test for Equal Variances and One way Analysis of Variance (ANOVA) were used to draw inferences for population based on samples tested in the DoE test. It was observed that Glycol based fluids lead to lubricant wash off resulting into increased seal drag force. Additionally, non-lubricated seals tend to show higher seal drag force as compared to lubricated seals. Keywords: Seal Drag, DoE, ANOVA
Technical Paper

A CDMA Based Approach for QoS Improvement in Intra-Aircraft Wireless Sensor Networks (WSN)

2024-06-01
2024-26-0435
Aviation industry is striving to leverage the technological advancements in connectivity, computation and data analytics. Scalable and robust connectivity enables futuristic applications like smart cabins, prognostic health management (PHM) and AI/ML based analytics for effective decision making leading to flight operational efficiency, optimized maintenance planning and aircraft downtime reduction. Wireless Sensor Networks (WSN) are gaining prominence on the aircraft for providing large scale connectivity solution that are essential for implementing various health monitoring applications like Structural Health Monitoring (SHM), Prognostic Health Management (PHM), etc. and control applications like smart lighting, smart seats, smart lavatory, etc. These applications help in improving passenger experience, flight operational efficiency, optimized maintenance planning and aircraft downtime reduction.
Technical Paper

Vehicle Yaw Stability Model Predictive Control Strategy for Dynamic and Multi-Objective Requirements

2024-04-09
2024-01-2324
Vehicle yaw stability control (YSC) can actively adjust the working state of the chassis actuator to generate a certain additional yaw moment for the vehicle, which effectively helps the vehicle maintain good driving quality under strong transient conditions such as high-speed turning and continuous lane change. However, the traditional YSC pursues too much driving stability after activation, ignoring the difference of multi-objective requirements of yaw maneuverability, actuator energy consumption and other requirements in different vehicle stability states, resulting in the decline of vehicle driving quality. Therefore, a vehicle yaw stability model predictive control strategy for dynamic and multi-objective requirements is proposed in this paper. Firstly, the unstable characteristics of vehicle motion are analyzed, and the nonlinear two-degree-of-freedom vehicle dynamics models are established respectively.
Technical Paper

Performance Analysis of Fuel Cells for High Altitude Long Flight Multi-rotor Drones

2024-04-09
2024-01-2177
In recent years, the burgeoning applications of hydrogen fuel cells have ignited a growing trend in their integration within the transportation sector, with a particular focus on their potential use in multi-rotor drones. The heightened mass-based energy density of fuel cells positions them as promising alternatives to current lithium battery-powered drones, especially as the demand for extended flight durations increases. This article undertakes a comprehensive exploration, comparing the performance of lithium batteries against air-cooled fuel cells, specifically within the context of multi-rotor drones with a 3.5kW power requirement. The study reveals that, for the specified power demand, air-cooled fuel cells outperform lithium batteries, establishing them as a more efficient solution.
Technical Paper

Ultra-Downsizing of ICEs Based on True Atkinson Cycle Implementations. Thermodynamic Analysis and Comparison on the Indicated Fuel Conversion Efficiency of Atkinson and Classical ICE Cycles

2024-04-09
2024-01-2096
Ultra-Downsizing (UD) was introduced as an even higher level of downsizing for Internal Combustion Engines ICEs, see [2] SAE 2015-01-1252. The introduction of Ultra Downsizing (UD) aims to enhance the power, efficiency, and sustainability of ICEs while maintaining the thermal and mechanical strain within acceptable limits. The following approaches are utilized: 1 True Atkinson Cycles are implemented utilizing an asymmetrical crank mechanism called Variable Compression and Stroke Ratios (VCSR). This mechanism allows for extended expansion stroke and continuous adjustment of the Volumetric Compression Ratio (VCR). 2 Unrestricted two or more stage high-pressure turbocharging and intensive intercooling: This setup enables more complete filling of the cylinder and reduces the compression work on the piston, resulting in higher specific power and efficiency. 3 The new Load Control (LC) approach is based to continuous VCR adjustment.
Technical Paper

Design and Sizing Methodology of Electric Vehicle Powertrain to Achieve Optimal Range and Performance

2024-04-09
2024-01-2160
Battery electric vehicles are quickly gaining momentum to improve vehicle fuel efficiency and emission reduction. However, they must be designed to provide adequate range on a single charge combined with good acceleration performance, top speed, gradeability, and fast charging times. The paper presents a model for sizing the power train of an electric vehicle, including the power electronic converter, electric motor, and battery pack. A major assumption is that an optimal wheel slip rate can be achieved by modern vehicles using slip control systems. MATLAB/Simulink was used to model the vehicle powertrain. Simulations were conducted based on different speed and acceleration profiles. The purpose of the study focused on the motor and power electronics sizing requirements to achieve optimal range and performance.
Technical Paper

Impact of a Split-Injection Strategy on Energy-Assisted Compression-Ignition Combustion with Low Cetane Number Sustainable Aviation Fuels

2024-04-09
2024-01-2698
The influence of a split-injection strategy on energy-assisted compression-ignition (EACI) combustion of low-cetane number sustainable aviation fuels was investigated in a single-cylinder direct-injection compression-ignition engine using a ceramic ignition assistant (IA). Two low-cetane number fuels were studied: a low-cetane number alcohol-to-jet (ATJ) sustainable aviation fuel (SAF) with a derived cetane number (DCN) of 17.4 and a binary blend of ATJ with F24 (Jet-A fuel with military additives, DCN 45.8) with a blend DCN of 25.9 (25 vol.% F24, 75 vol.% ATJ). A pilot injection mass sweep (3.5-7.0 mg) with constant total injection mass and an injection dwell sweep (1.5-3.0 ms) with fixed main injection timing was performed. Increasing pilot injection mass was found to reduce cycle-to-cycle combustion phasing variability by promoting a shorter and more repeatable combustion event for the main injection with a shorter ignition delay.
Technical Paper

Prediction of Aerodynamic Drag in SUVs with Different Specifications by Using Large-Eddy Simulations

2024-04-09
2024-01-2525
Emission regulations are becoming more stringent, as global temperature continues to rise due to the increasing greenhouse gases in the atmosphere. Battery electric vehicles (BEV), which have zero tailpipe emissions, are expected to become widespread to solve this problem. As the powertrain of BEV is more efficient than conventional powered vehicles, the proportion of energy loss during driving due to aerodynamic drag becomes greater. Therefore, reducing aerodynamic drag for improved energy efficiency is important to extend the pure electric range. At Honda, Computational Fluid Dynamics (CFD) and wind tunnel testing are used to optimize vehicle shape and reduce aerodynamic drag. Highly accurate CFD is essential to efficiently guide the development process towards reducing aerodynamic drag. Specifically, the prediction accuracy for the exterior shape, underfloor devices, tires, and wheels must meet development requirements.
Technical Paper

Analysis of Airworthiness Directives for Formulating Aircraft Sensor Solutions and Maintenance Strategies

2024-03-05
2024-01-1929
Airworthiness Directives (ADs) serve as a medium through which commercial and military regulators improve the system’s performance by responding to the failure of the airplanes. The Federal Aviation Administration (FAA) and United States Air Force (USAF) provide ADs that detail overall cost on operators. The dataset derived from the Boeing 767 (B767) and its military derivatives, USAF’s KC-46A gives ideas into sensor solutions and maintenance approaches that may reduce these costs. Given the ADs significant costs for Boeing 767 operations, an analytical failure framework that determines the failure modes and failure mechanisms is introduced. For example, a huge portion of severe impairment (e.g., cracking, corrosion, and chafing) constitutes 27% of failure mechanisms in these systems. To reduce future B767 ADs for commercial and military operators, sensor solution and maintenance strategies using performance metric and genetic algorithm are assessed.
Technical Paper

Implementation of Long Assembly Drills for 777X Flap Carriers

2024-03-05
2024-01-1923
Large diameter, tightly toleranced fastener patterns are commonplace in aerospace structures. Satisfactory generation of these holes is often challenging and can be further complicated by difficult or obstructed access. Bespoke tooling and drill jigs are typically used in conjunction with power feed units leading to a manual, inflexible, and expensive manufacturing process. For 777X flap production, Boeing and Electroimpact collaborated to create a novel, automated solution to generate the fastener holes for the main carrier fitting attachment pattern. Existing robotic automation used for skin to substructure assembly was modified to utilize extended length (up to 635mm), bearing-supported drill bar sub-assemblies. These Long Assembly Drills (LADs) had to be easily attached and detached by one operator, interface with the existing spindle(s), supply cutting lubricant, extract swarf on demand, and include a means for automatically locating datum features.
Technical Paper

Interface Gap Measurement Using Low Coherence Interferometry

2024-03-05
2024-01-1920
Large-scale aerostructures are commonly constructed using multiple layers of stacked material which are fastened together using mechanical methods. Ensuring the interface gaps between these materials are kept within engineering tolerances is of utmost importance to the structural integrity of the aircraft over its service life. Manual, right angle feeler gauges are the traditional method for measurement of interface gaps, but this method is tedious and mechanic dependent. A portable hand tool utilizing low-coherence interferometry has been developed to address these issues. The tool uses a right-angle probe tip which is inserted into a previously drilled hole and driven through the depth of the material. A line scan of data is collected and analyzed for the presence of interface gaps. To measure the consistency of the gap around the circumference of the hole, the tool is rotated by the operator and additional scans are collected.
Technical Paper

Sea-Level Characterization of Electrically Assisted Turbocharger for Use on Aviation Diesel Engine

2024-03-05
2024-01-1914
Airborne compression-ignition engine operations differ significantly from those in ground vehicles, both in mission requirements and in operating conditions. Unique challenges exist in the aviation space, and electrification technologies originally developed for ground applications may be leveraged to address these considerations. One such technology, electrically assisted turbochargers (EATs), have the potential to address the following: increase the maximum system power output, directly control intake manifold air pressure, and reignite the engine at altitude conditions in the event of an engine flame-out. Sea-level experiments were carried out on a two-liter, four-cylinder compression-ignition engine with a commercial-off-the-shelf EAT that replaced the original turbocharger. The objective of these experiments was to demonstrate the technology, assess the performance, and evaluate control methods at sea level prior to altitude experimentation.
Technical Paper

Prevention of Operational Errors in Semi-Automatic Riveters by Machine Vision Systems Using Deep Learning

2024-03-05
2024-01-1944
This paper reports the development of an operation support system for production equipment using image processing with deep learning. Semi-automatic riveters are used to attach small parts to skin panels, and they involve manual positioning followed by automated drilling and fastening. The operator watches a monitor showing the processing area, and two types of failure may arise because of human error. First, the operator should locate the correct position on the skin panel by looking at markers painted thereon but may mistakenly cause the equipment to drill at an incorrect position. Second, the operator should prevent the equipment from fastening if they see chips around a hole after drilling but may overlook the chips; chips remaining around a drilled hole may cause the fastener to be inserted into the hole and fastened at an angle, which can result in the whole panel having to be scrapped.
Technical Paper

Power Transfer Protocol for Variable Frequency Aircraft Electrical Power Systems

2024-03-05
2024-01-1915
Since the early days of aviation, when an AC-type generator became a primary source of electrical power for all aircraft systems, the demand for electrical power has steadily grown. Following rapid technology and scientific advancements in the aerospace industry, the complexity and criticality of all aircraft systems have increased to the point where multiple independent and isolated electrical power sources are required. In such an environment, with two or more variable-frequency AC-type generators that can be simultaneously activated to provide electrical power to the aircraft power distribution system, a safe power transfer process becomes a major priority. This means that any two independent aircraft AC power sources with different frequencies or phase angles cannot be connected simultaneously to a common power bus.
X