Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

DO-326A and ED-202A An Introduction to the New and Mandatory Aviation Cyber-Security Essentials

2024-07-29
This course will introduce participants to industry best practices for real-world aviation cyber-security risk-assessment, development & assurance. Participants will learn the information necessary to help minimize DO-326/ED-202-set compliance risks and costs, while also optimizing cyber-security levels for the development, deployment and in-service phases Topics such as aircraft security aspects of safety, systems-approach to security, security planning, the airworthiness security process, and security effectiveness assurance will be covered.
Technical Paper

Neural Network Modeling of Black Box Controls for Internal Combustion Engine Calibration

2024-07-02
2024-01-2995
The calibration of Engine Control Units (ECUs) for road vehicles is challenged by stringent legal and environmental regulations, coupled with short development cycles. The growing number of vehicle variants, although sharing similar engines and control algorithms, requires different calibrations. Additionally, modern engines feature increasingly number of adjustment variables, along with complex parallel and nested conditions within the software, demanding a significant amount of measurement data during development. The current state-of-the-art (White Box) model-based ECU calibration proves effective but involves considerable effort for model construction and validation. This is often hindered by limited function documentation, available measurements, and hardware representation capabilities. This article introduces a model-based calibration approach using Neural Networks (Black Box) for two distinct ECU functional structures with minimal software documentation.
Technical Paper

Aerodynamics' Influence on Performance in Human-Powered Vehicles for Sustainable Transportation

2024-06-12
2024-37-0028
The issue of greenhouse gas (GHG) emissions from the transportation sector is widely acknowledged. Recent years have witnessed a push towards the electrification of cars, with many considering it the optimal solution to address this problem. However, the substantial battery packs utilized in electric vehicles contribute to a considerable embedded ecological footprint. Research has highlighted that, depending on the vehicle's size, tens or even hundreds of thousands of kilometers are required to offset this environmental burden. Human-powered vehicles (HPVs), thanks to their smaller size, are inherently much cleaner means of transportation, yet their limited speed impedes widespread adoption for mid-range and long-range trips, favoring cars, especially in rural areas. This paper addresses the challenge of HPV speed, limited by their low input power and non-optimal distribution of the resistive forces.
Technical Paper

Choosing the Best Lithium Battery Technology in the Hybridization of Ultralight Aircraft

2024-06-12
2024-37-0017
Many research centers and companies in general aviation have been devoting efforts to the electrification of propulsive plants to reduce environmental impact and/or increase safety. Even if the final goal is the elimination of fossil fuels, the limitations of today's battery in terms of energy and power densities suggest the adoption of hybrid-electric solutions that combine the advantages of conventional and electric propulsive systems, namely reduced fuel consumption, high peak power, and increased safety deriving from redundancy. Today, lithium batteries are the best commercial option for the electrification of all means of transportation. However, lithium batteries are a family of technologies that presents a variety of specifications in terms of gravimetric and volumetric energy density, discharge and charge currents, safety, and cost.
Technical Paper

Design and Manufacturing of an Inclinometer Sensing Element for Launch Vehicle Applications

2024-06-01
2024-26-0419
Design and Manufacturing of an Inclinometer sensing element for launch vehicle applications Tony M Shaju, Nirmal Krishna, G Nagamalleswara Rao, Pradeep K Scientist/Engineer, ISRO Inertial Systems Unit, Vattiyoorkavu, Trivandrum, India - 695013 Indian Space Research Organisation (ISRO) uses indigenously developed launch vehicles like PSLV, GSLV, LVM3 and SSLV for placing remote sensing and communication satellites along with spacecrafts for other important scientific applications into earth bound orbits. Navigation systems present in the launch vehicle play a pivotal role in achieving the intended orbits for these spacecrafts. During the assembly of these navigation packages on the launch vehicle, it is required to measure the initial tilt of the navigation sensors for any misalignment corrections, which is given as input to the navigation software. A high precision inclinometer is required to measure these tilts with a resolution of 1 arc-second.
Technical Paper

Design and Development of Terminal Velocity Measurement System for Descending Modules

2024-06-01
2024-26-0438
Gaganyaan programme is India's prestigious human space exploration endeavour. During the re-entry of the spacecraft, achieving the minimum terminal velocity is paramount to ensure the crew's safety upon landing. Therefore, acquiring accurate in-flight velocity data is essential for comprehensively understanding the landing dynamics and facilitating post-flight data analysis and validation. Moreover, terminal velocity plays a pivotal role in the qualification of parachute systems during platform-drop tests where the objective is to minimize the terminal velocity for safe impact. Terminal velocity also serves as a critical design parameter for the crew seat attenuation system. In addition to terminal velocity, it is equally necessary to characterize the horizontal velocities acting on the decelerating body due to various factors such as parachute sway and wind drift. This data also plays a central role in refining our systems for future enhancements.
Technical Paper

Sustainable Microalgae-Membrane Photobioreactor (MPBR) System for Onboard Oxygen Production in an Aircraft

2024-06-01
2024-26-0402
The purpose of the Air Generation System is to provide a constant supply of conditioned fresh air to meet the necessary oxygen availability and to prevent carbon dioxide (CO2) concentrations for the occupants in an aircraft. The engine bleed energy or electrical load energy consumed towards this circumstance accounts to be approx. 5% of total fuel burn and in turn, contributes to the global emissions of greenhouse gases. This paper studies the improvement areas of the present conventional system such as fuel burn consumption associated with an aircraft environmental control system (ECS) depending on, the amount of bleed and ram air usage, electric power consumption. Improved systems for propulsion, power generation, sustainability, hybridization, and environmental control can be desirable for an aircraft.
Technical Paper

Energy Consumption in Lightweight Electric Aircraft

2024-06-01
2024-26-0403
Electric aircraft have emerged as a promising solution for sustainable aviation, aiming to reduce greenhouse gas emissions and noise pollution. Efficiently estimating and optimizing energy consumption in these aircraft is crucial for enhancing their design, operation, and overall performance. This paper presents a novel framework for analyzing and modeling energy consumption patterns in lightweight electric aircraft. A mathematical model is developed, encompassing key factors such as aircraft weight, velocity, wing area, air density, coefficient of drag, and battery efficiency. This model estimates the total energy consumption during steady-level flight, considering the power requirements for propulsion, electrical systems, and auxiliary loads. The model serves as the foundation for analyzing energy consumption patterns and optimizing the performance of lightweight electric aircraft.
Technical Paper

Selective Laser Melting Based Additive Manufacturing Process Diagnostics using In-line Monitoring Technique and Laser-Material Interaction Model

2024-06-01
2024-26-0420
Selective Laser Melting (SLM) has gained widespread usage in aviation, aerospace, and die manufacturing due to its exceptional capacity for producing intricate metal components of highly complex geometries. Nevertheless, the instability inherent in the SLM process frequently results in irregularities in the quality of the fabricated components. As a result, this hinders the continuous progress and wider acceptance of SLM technology. Addressing these challenges, in-process quality control strategies during SLM operations have emerged as effective remedies for mitigating the quality inconsistencies found in the final components. This study focuses on utilizing optical emission spectroscopy and IR thermography to continuously monitor and analyze the SLM process within the powder bed, with the aim of strengthening process control and minimizing defects.
Technical Paper

Single Board Computer Based Data Acquisition System for Monitoring Parameters of Reusable Launch Vehicle Interface System

2024-06-01
2024-26-0434
With the upcoming technology demonstration projects such as the Reusable Launch Vehicle, easily portable data acquisition systems for ground testing are the need of the hour. The existing data acquisition systems used in ISRO scenario tends to be bulky or to be of higher capability based on the number parameters to be acquired, which makes them underutilized. To tackle this problem, a novel approach to implement a data acquisition system on BeagleBone®️ Black, a Single Board Computer (SBC) was conceived. With this approach the number of components utilized would be reduced as we make use of ADCs present in the BeagleBone computer. Also, the size of the hardware setup is significantly reduced as the chosen SBC fits into the palm of our hands. To protect the data acquisition components from common mode voltages, an isolation amplifier is utilized. The acquired parameters are digitized and broadcasted.
Technical Paper

Hybrid Cooling System for Thermal Management in Electric Aerial Vehicles

2024-06-01
2024-26-0468
Continuous improvements and innovations towards sustainability in the aviation industry has brought interest in electrified aviation. Electric aircrafts have short missions in which the temporal variability of thermal loads are high. Lithium-ion (Li-ion) batteries have emerged as prominent power source candidate for electric aircrafts and Urban Air Mobility (UAM). UAMs and Electric aircrafts have large battery packs with battery capacity ranging in hundreds or thousands of kWh. If the battery is exposed to temperatures outside the optimum range, the life and the performance of the battery reduces drastically. Hence, it is crucial to have a Thermal Management System (TMS) which would reduce the heat load on battery in addition to cabin, and machinery thermal loads. Thermal management can be done through active or passive cooling. Adding a passive cooling system like Phase Change Material (PCM) to the TMS reduces the design maximum thermal loads.
Technical Paper

Fault Detection in Machine Bearings using Deep Learning - LSTM

2024-06-01
2024-26-0473
In today's industrial sphere, machines are the key supporting various sectors and their operations. Over time, due to extensive usage, these machines undergo wear and tear, introducing subtle yet consequential faults that may go unnoticed. Given the pervasive dependence on machinery, the early and precise detection of these faults becomes a critical necessity. Detecting faults at an early stage not only prevents expensive downtimes but also significantly improves operational efficiency and safety standards. This research focuses on addressing this crucial need by proposing an effective system for condition monitoring and fault detection, leveraging the capabilities of advanced deep learning techniques. The study delves into the application of five diverse deep learning models—LSTM, Deep LSTM, Bi LSTM, GRU, and 1DCNN—in the context of fault detection in bearings using accelerometer data. Accelerometer data is instrumental in capturing vital vibrations within the machinery.
Technical Paper

Using Generative Models to Synthesize Multi-Component Asset Images for Training Defect Inspection Models

2024-06-01
2024-26-0474
Industries have been increasingly adopting AI based computer vision models for automated asset defect inspection. A challenging aspect within this domain is the inspection of composite assets consisting of multiple components, each of which is an object of interest for inspection, with its own structural variations, defect types and signatures. Training vision models for such an inspection process involves numerous challenges around data acquisition such as insufficient volume, inconsistent positioning, poor quality and imbalance owing to inadequate image samples of infrequently occurring defects. Approaches to augmenting the dataset through Standard Data Augmentation (SDA) methods (image transformations such as flipping, rotation, contrast adjustment, etc.) have had limited success. When dealing with images of such composite assets, it is challenging to correct the data imbalance at the component level using image transformations as they apply to all the components within an image.
Technical Paper

Formal Technique for Fault Detection and Identification of Control Intensive Application of Stall Warning System using System Theoretic Process Analysis

2024-06-01
2024-26-0471
Faults if not detected and processed will create catastrophe in closed loop system for safety critical applications in automotive, space, medical, nuclear, and aerospace domains. In aerospace applications such as stall warning and protection/prevention system (SWPS), algorithms detect stall condition and provide protection by deploying the elevator stick pusher. Failure to detect and prevent stall leads to loss of lives and aircraft. Traditional Functional Hazard and Fault Tree analyses are inadequate to capture all failures due to the complex hardware-software interactions for stall warning and protection system. Hence, an improved methodology for failure detection and identification is proposed. This paper discusses a hybrid formal method and model-based technique using STPA to identify and diagnose faults and provide monitors to process the identified faults to ensure robust design of the indigenous stall warning and protection system (SWPS).
Technical Paper

Aerospace Vehicle Motion Simulation with Real-Time Telemetry Data

2024-06-01
2024-26-0483
In any aerospace mission, after the vehicle has taken off, the visual is lost and the information about its current state is only through the sensor data telemetered in real-time. Very often, this data is difficult to perceive and analyze. In such cases, a 3D, near to real representation of the data can immensely improve the understanding of the current state of mission and can aid in real-time decision making if possible. Generally, any aerospace vehicle carries onboard an inertial system along with other sensors, which measures the position and attitude of the vehicle. This data is communicated to ground station. The received telemetry data is encoded as bytes and sent as packets through the network using the Universal Datagram Protocol (UDP).  The transmitted data is often available in a very low frequency, which is not desirable for a smooth display. It is therefore necessary to interpolate the data between intervals based on the time elapsed since last rendered frame.
Technical Paper

Deep Learning-Based Digital Twining Models for Inter System Behavior and Health Assessment of Combat Aircraft Systems

2024-06-01
2024-26-0478
Modern combat aircraft demands efficient maintenance strategies to ensure operational readiness while minimizing downtime and costs. Innovative approaches using Digital Twining models are being explored to capture inter system behaviours and assessing health of systems which will help maintenance aspects. This approach employs advanced deep learning protocols to analyze the intricate interactions among various systems using the data collected from various systems. The research involves extensive data collection from sensors within combat aircraft, followed by data preprocessing and feature selection, using domain knowledge and correlation analysis. Neural networks are designed for individual systems, and hyper parameter tuning is performed to optimize their performance. By combining the outputs of these during the model integration phase, an overall health assessment of the aircraft will be generated.
X