Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

CFD Methodology Development to Predict Lubrication Effectiveness in Electromechanical Actuators

2024-06-01
2024-26-0466
Electromechanical actuators (EMAs) play a crucial role in aircraft electrification, offering advantages in terms of aircraft-level weight, rigging and reliability compared to hydraulic actuators. To prevent backdriving, skewed roller braking devices called "no-backs" are employed to provide braking torque. These technology components are continuing to be improved with analysis driven design innovations eg. U.S. Pat. No. 8,393,568. The no-back mechanism has the rollers skewed around their own transverse axis that allow for a combination of rolling and sliding against the stator surfaces. This friction provides the necessary braking torque that prevents the backdriving. By controlling the friction radius and analyzing the Hertzian contact stresses, the brake can be sized for the desired duty cycle. No-backs can be configured to provide braking torque for both tensile and compressive backdriving loads.
Event

Social Media Toolkit - 2024 AeroTech®

2024-04-28
Check out the topics of discussion at the 2024 AeroTech event, such as aircraft systems, advanced air mobility, manufacturing and materials, and so much more!
Event

AeroTech

2024-04-28
AeroTech is your passport to explore the most remarkable advancements in aerospace technology. Form supersonic aircraft to sustainable aviation and propulsion, AeroTech covers it all.
Event

Contact - AeroTech®

2024-04-28
Contact the AeroTech team for any questions around exhibiting, sponsorship, event programming, and more.
Event

Exhibit & Sponsor - 2025 AeroTech

2024-04-28
Secure your space! Reserve your AeroTech exhibit booth and/or sponsorship today — and take advantage of early-bird opportunities at AeroTech® 2024.
Event

Exhibit & Sponsor - 2025 AeroTech

2024-04-28
Secure your space! Reserve your AeroTech exhibit booth and/or sponsorship today — and take advantage of early-bird opportunities at AeroTech® 2024.
Event

Program - 2024 AeroTech

2024-04-28
Explore AeroTech's Key Tracks, Sessions, and Presentations on hot topics in the Aerospace industry.
Technical Paper

Vehicle Yaw Stability Model Predictive Control Strategy for Dynamic and Multi-Objective Requirements

2024-04-09
2024-01-2324
Vehicle yaw stability control (YSC) can actively adjust the working state of the chassis actuator to generate a certain additional yaw moment for the vehicle, which effectively helps the vehicle maintain good driving quality under strong transient conditions such as high-speed turning and continuous lane change. However, the traditional YSC pursues too much driving stability after activation, ignoring the difference of multi-objective requirements of yaw maneuverability, actuator energy consumption and other requirements in different vehicle stability states, resulting in the decline of vehicle driving quality. Therefore, a vehicle yaw stability model predictive control strategy for dynamic and multi-objective requirements is proposed in this paper. Firstly, the unstable characteristics of vehicle motion are analyzed, and the nonlinear two-degree-of-freedom vehicle dynamics models are established respectively.
Technical Paper

A Suspension Tuning Parameter Study for Brake Pulsation

2024-04-09
2024-01-2319
Brake pulsation is a low frequency vibration phenomenon in brake judder. In this study, a simulation approach has been developed to understand the physics behind brake pulsation employing a full vehicle dynamics CAE model. The full vehicle dynamic model was further studied to understand the impact of suspension tuning variation to brake pulsation performance. Brake torque variation (BTV) due to brake thickness variation from uneven rotor wear was represented mathematically in a sinusoidal form. The wheel assembly vibration from the brake torque variation is transmitted to driver interface points such as the seat track and the steering wheel. The steering wheel lateral acceleration at the 12 o’clock position, driver seat acceleration, and spindle fore-aft acceleration were reviewed to explore the physics of brake pulsation. It was found that the phase angle between the left and right brake torque generated a huge variation in brake pulsation performance.
Technical Paper

An advanced tire modeling methodology considering road roughness for chassis control system development

2024-04-09
2024-01-2317
As the automotive industry accelerates its virtual engineering capabilities, there is a growing requirement for increased accuracy across a broad range of vehicle simulations. Regarding control system development, utilizing vehicle simulations to conduct ‘pre-tuning’ activities can significantly reduce time and costs. However, achieving an accurate prediction of, e.g., stopping distance, requires accurate tire modeling. The Magic Formula tire model is often used to effectively model the tire response within vehicle dynamics simulations. However, such models often: i) represent the tire driving on sandpaper; and ii) do not accurately capture the transient response over a wide slip range. In this paper, a novel methodology is developed using the MF-Tyre/MF-Swift tire model to enhance the accuracy of ABS braking simulations.
X