Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Elastomeric Swaging Finite Element Analysis Methodology to Evaluate Structural Integrity of Internal Swaged Joints

2024-06-01
2024-26-0428
In applications demanding high performance under extreme conditions of pressure and temperature, a range of Mechanically Attached Fittings (MAFs) is offered by various Multinational Corporations (MNCs). These engineered fittings have been innovatively designed to meet the rigorous requirements of the aerospace industry, offering a cost-effective and lightweight alternative to traditional methods such as brazing, welding, or other mechanically attached tube joints. One prominent method employed for attaching these fittings to tubing is through Internal Swaging, a mechanical technique. This process involves the outward formation of rigid tubing into grooves within the fitting. One of the methods with which this intricate operation is achieved is by using a drawbolt - expander assembly within an elastomeric swaging machine.
Event

Program - 2024 AeroTech

2024-05-14
Explore AeroTech's Key Tracks, Sessions, and Presentations on hot topics in the Aerospace industry.
Event

Exhibit & Sponsor - 2025 AeroTech

2024-05-14
Secure your space! Reserve your AeroTech exhibit booth and/or sponsorship today — and take advantage of early-bird opportunities at AeroTech® 2024.
Event

2024-05-14
Event

Social Media Toolkit - 2024 AeroTech®

2024-05-14
Check out the topics of discussion at the 2024 AeroTech event, such as aircraft systems, advanced air mobility, manufacturing and materials, and so much more!
Event

Exhibit & Sponsor - 2025 AeroTech

2024-05-14
Secure your space! Reserve your AeroTech exhibit booth and/or sponsorship today — and take advantage of early-bird opportunities at AeroTech® 2024.
Event

AeroTech

2024-05-14
AeroTech is your passport to explore the most remarkable advancements in aerospace technology. Form supersonic aircraft to sustainable aviation and propulsion, AeroTech covers it all.
Event

Contact - AeroTech®

2024-05-14
Contact the AeroTech team for any questions around exhibiting, sponsorship, event programming, and more.
Technical Paper

Ultra-Downsizing of ICEs Based on True Atkinson Cycle Implementations. Thermodynamic Analysis and Comparison on the Indicated Fuel Conversion Efficiency of Atkinson and Classical ICE Cycles

2024-04-09
2024-01-2096
Ultra-Downsizing (UD) was introduced as an even higher level of downsizing for Internal Combustion Engines ICEs, see [2] SAE 2015-01-1252. The introduction of Ultra Downsizing (UD) aims to enhance the power, efficiency, and sustainability of ICEs while maintaining the thermal and mechanical strain within acceptable limits. The following approaches are utilized: 1 True Atkinson Cycles are implemented utilizing an asymmetrical crank mechanism called Variable Compression and Stroke Ratios (VCSR). This mechanism allows for extended expansion stroke and continuous adjustment of the Volumetric Compression Ratio (VCR). 2 Unrestricted two or more stage high-pressure turbocharging and intensive intercooling: This setup enables more complete filling of the cylinder and reduces the compression work on the piston, resulting in higher specific power and efficiency. 3 The new Load Control (LC) approach is based to continuous VCR adjustment.
Technical Paper

Performance Analysis of Fuel Cells for High Altitude Long Flight Multi-rotor Drones

2024-04-09
2024-01-2177
In recent years, the burgeoning applications of hydrogen fuel cells have ignited a growing trend in their integration within the transportation sector, with a particular focus on their potential use in multi-rotor drones. The heightened mass-based energy density of fuel cells positions them as promising alternatives to current lithium battery-powered drones, especially as the demand for extended flight durations increases. This article undertakes a comprehensive exploration, comparing the performance of lithium batteries against air-cooled fuel cells, specifically within the context of multi-rotor drones with a 3.5kW power requirement. The study reveals that, for the specified power demand, air-cooled fuel cells outperform lithium batteries, establishing them as a more efficient solution.
X