Refine Your Search

Topic

Author

Affiliation

Search Results

Event

Exhibit & Sponsor - 2025 AeroTech

2024-04-26
Secure your space! Reserve your AeroTech exhibit booth and/or sponsorship today — and take advantage of early-bird opportunities at AeroTech® 2024.
Event

Contact - AeroTech®

2024-04-26
Contact the AeroTech team for any questions around exhibiting, sponsorship, event programming, and more.
Event

Program - 2024 AeroTech

2024-04-26
Explore AeroTech's Key Tracks, Sessions, and Presentations on hot topics in the Aerospace industry.
Event

Exhibit & Sponsor - 2025 AeroTech

2024-04-26
Secure your space! Reserve your AeroTech exhibit booth and/or sponsorship today — and take advantage of early-bird opportunities at AeroTech® 2024.
Event

Social Media Toolkit - 2024 AeroTech®

2024-04-26
Check out the topics of discussion at the 2024 AeroTech event, such as aircraft systems, advanced air mobility, manufacturing and materials, and so much more!
Event

AeroTech

2024-04-26
AeroTech is your passport to explore the most remarkable advancements in aerospace technology. Form supersonic aircraft to sustainable aviation and propulsion, AeroTech covers it all.
Technical Paper

Performance Analysis of Fuel Cells for High Altitude Long Flight Multi-rotor Drones

2024-04-09
2024-01-2177
In recent years, the burgeoning applications of hydrogen fuel cells have ignited a growing trend in their integration within the transportation sector, with a particular focus on their potential use in multi-rotor drones. The heightened mass-based energy density of fuel cells positions them as promising alternatives to current lithium battery-powered drones, especially as the demand for extended flight durations increases. This article undertakes a comprehensive exploration, comparing the performance of lithium batteries against air-cooled fuel cells, specifically within the context of multi-rotor drones with a 3.5kW power requirement. The study reveals that, for the specified power demand, air-cooled fuel cells outperform lithium batteries, establishing them as a more efficient solution.
Technical Paper

Ultra-Downsizing of ICEs Based on True Atkinson Cycle Implementations. Thermodynamic Analysis and Comparison on the Indicated Fuel Conversion Efficiency of Atkinson and Classical ICE Cycles

2024-04-09
2024-01-2096
Ultra-Downsizing (UD) was introduced as an even higher level of downsizing for Internal Combustion Engines ICEs, see [2] SAE 2015-01-1252. The introduction of Ultra Downsizing (UD) aims to enhance the power, efficiency, and sustainability of ICEs while maintaining the thermal and mechanical strain within acceptable limits. The following approaches are utilized: 1 True Atkinson Cycles are implemented utilizing an asymmetrical crank mechanism called Variable Compression and Stroke Ratios (VCSR). This mechanism allows for extended expansion stroke and continuous adjustment of the Volumetric Compression Ratio (VCR). 2 Unrestricted two or more stage high-pressure turbocharging and intensive intercooling: This setup enables more complete filling of the cylinder and reduces the compression work on the piston, resulting in higher specific power and efficiency. 3 The new Load Control (LC) approach is based to continuous VCR adjustment.
Technical Paper

Numerical Analysis of Different Injectors for Kerosene/Hydrogen-Peroxide and Ethanol Amine/Hydrogen-Peroxide for Satellite Thruster

2024-02-23
2023-01-5180
In a satellite thruster the function of injector plays a major role in controlling the combustion. This paper presents the numerical simulation of two most used injectors namely, impinging doublet, and triplet using Ansys fluent. The injectors are designed for the non-toxic, green propellants used in satellite thrusters. The present study focuses on the design and simulation of the injectors with 2 variant of green propellants i.e., Kerosene/Hydrogen-peroxide and Ethanol Amine/Hydrogen-peroxide. The objective of the study is to investigate the performance of the two injectors in terms of atomization, combustion efficiency and thrust generation. Theoretical design calculations were performed for a 20 N bi-propellant satellite thruster. A comparative study on the condensed combustion products and injector was carried out using NASA CEA Run code and Ansys fluent, respectively. The ethanol amine/hydrogen-peroxide injector showed better performance in terms of combustion efficiency.
Technical Paper

Comparative Analysis and Testing the Performance of Various Fuels in Ramjet

2024-02-23
2023-01-5177
The development of ramjet engines has experienced a significant increase in response to the growing demand for supersonic speed capabilities in contemporary propulsion systems and missile weaponry. Their efficient operation at supersonic speeds has garnered increased attention. The study focuses on designing a diffuser and ram cone for decelerating supersonic flow in the combustion chamber. Performance tests for hydrogen and ethanol fuels are conducted at Mach values of 3.5, 3, and 2.5. Injectors are positioned asymmetrically in parallel, perpendicular, and at a 45-degree angle to the flow. Effects of injector orifice diameters (0.8mm, 1mm, 1.2mm) on atomization and penetration length distribution are investigated. SolidWorks is used for design, and Ansys with a coupled implicit second-order upwind solver analyzes the Reynolds-averaged Navier-Stokes equation. Eddy dissipation handles combustion. Hydrogen and ethanol are modeled and injected, reacting with atmospheric oxygen.
Technical Paper

Zero Carbon Emission Aviation Fuel Technology Review - The Hydrogen Pathway

2024-01-08
2023-36-0029
The commercial aviation currently accounts for roughly 2.5 % of the global CO2 emissions and around 3.5% of world warming emissions, taking into account non CO2 effects on the climate. Its has grown faster in recent decades than the other transport modes (road, rail or shipping), with an average rate of 2.3%/year from 1990 to 2019, prior to the pandemic. Moreover, its share of Greenhouse (GHG) emissions is supposed to grow, with the increasing demand scenario of air trips worldwide. This scenario might threaten the decarbonization targets assumed by the aviation industry, in line with the world efforts to minimize the climate effects caused by the carbon emissions. In this context, hydrogen is set as a promising alternative to the traditional jet fuel, due to its zero carbon emissions.
Journal Article

TOC

2023-10-24
Abstract TOC
Research Report

Decarbonized Fuel Options for Civil Aviation

2023-06-13
EPR2023012
Drop-in replacement biofuels and electrofuels can provide net-zero CO2 emissions with dramatic reductions in contrail formation. Biofuels must transition to second-generation cellulosic feedstocks while improving land and soil management. Electrofuels, or "e-fuels,” require aggressive cost reduction in hydrogen production, carbon capture, and fuel synthesis. Hydrogen has great potential for energy efficiency, cost reduction, and emissions reduction; however, its low density (even in liquid form) combined with it’s extremely low boiling temperature mean that bulky spherical tanks will consume considerable fuselage volume. Still, emerging direct-kerosene fuel cells may ultimately provide a superior zero-emission, energy-dense solution. Decarbonized Power Options for Civil Aviation discusses the current challenges with these power options and explores the economic incentives and levers vital to decarbonization.
Journal Article

Hydrogen Fuel System for Aircraft

2023-03-07
2023-01-0976
Hydrogen propulsion is crucial for achieving zero carbon emissions in commercial aviation. The aircraft’s power can be generated through hydrogen combustion in a gas turbine engine and electricity through the fuel cell. Though promising, it poses several challenges for implementation, such as the large volume and structural modification required to carry cryogenic liquid hydrogen (LH2). Also, the current jet fuel system used in commercial aviation needs significant changes to incorporate hydrogen aircraft. The primary objective of this study was to analyze the Hypothesis related to Liquid Hydrogen Aircraft, which will help define the hydrogen fuel system. The theories were: A pressurization system is essential to maintain the LH2 tank pressure within the safe limit, Gaseous hydrogen transformed from Liquid Hydrogen is suitable for tank pressurization, Possible to maintain Cryogenic tank conditions during night non-operation time.
Standard

Synthetic Jet Fuels from Non-Petroleum Feed Stocks

2023-02-20
CURRENT
AIR6148
This SAE Aerospace Information Report (AIR) provides general information on the developing subject of synthetic jet fuels derived from non-petroleum feed stocks. It addresses synthetic jet fuel properties and other topics associated with their use and is intended as a guide to assist aviation fuel system designers in considering important information on fuel properties when designing aircraft fuel systems and components. The AIR is limited to “drop-in” fuels that meet the requirements of the respective fuel specifications and are compatible with typical aircraft and ground refueling systems. While some key properties are included in this AIR for discussion, the reader should utilize documents such as MIL-HDBK-510 or the ASTM International research reports for a more-detailed review of fuel properties. AIR7484 also gives more details on fuel properties, specifically as they relate to airframe fuel system design.
Standard

In-Process Welding of Castings

2022-09-15
WIP
AMS2694D
This specification defines the requirements for in-process correction of foundry discontinuities by manual welding of castings.
X