Refine Your Search

Search Results

Viewing 1 to 13 of 13
Journal Article

Accelerating the Generation of Static Coupling Injection Maps Using a Data-Driven Emulator

2021-04-06
2021-01-0550
Accurate modeling of the internal flow and spray characteristics in fuel injectors is a critical aspect of direct injection engine design. However, such high-fidelity computational fluid dynamics (CFD) models are often computationally expensive due to the requirement of resolving fine temporal and spatial scales. This paper addresses the computational bottleneck issue by proposing a machine learning-based emulator framework, which learns efficient surrogate models for spatiotemporal flow distributions relevant for static coupling injection maps, namely total void fraction, velocity, and mass, within a design space of interest. Different design points involving variations of needle lift, fuel viscosity, and level of non-condensable gas in the fuel were explored in this study. An interpretable Bayesian learning strategy was employed to understand the effect of the design parameters on the void fraction fields at the exit of the injector orifice.
Technical Paper

An Optical and Numerical Characterization of Directly Injected Compressed Natural Gas Jet Development at Engine-Relevant Conditions

2019-04-02
2019-01-0294
Compressed natural gas (CNG) is an attractive, alternative fuel for spark-ignited (SI), internal combustion (IC) engines due to its high octane rating, and low energy-specific CO2 emissions compared with gasoline. Directly-injected (DI) CNG in SI engines has the potential to dramatically decrease vehicles’ carbon emissions; however, optimization of DI CNG fueling systems requires a thorough understanding of the behavior of CNG jets in an engine environment. This paper therefore presents an experimental and modeling study of DI gaseous jets, using methane as a surrogate for CNG. Experiments are conducted in a non-reacting, constant volume chamber (CVC) using prototype injector hardware at conditions relevant to modern DI engines. The schlieren imaging technique is employed to investigate how the extent of methane jets is impacted by changing thermodynamic conditions in the fuel rail and chamber.
Technical Paper

The Direct Transition of Fuel Sprays to theDense-Fluid Mixing Regime in the Contextof Modern Compression Ignition Engines

2018-04-03
2018-01-0298
Fuel supercriticality has recently received significant attention due to the elevated pressures and temperatures that directly-injected (DI) fuel sprays encounter in modern internal combustion (IC) engines. This paper presents a theoretical examination of conventional and alternative DI fuels at conditions relevant to the operation of compression ignition (CI) engines. The focus is to identify the conditions under which the injected liquid fuel can bypass the atomization process and directly transition to a diffusional mixing regime with the chamber gas. Evaluating the microscopic length-scales of the phase boundary associated with the injection of liquid nitrogen into its own vapor, it is found that the conventional threshold based on the interfacial Knudsen number (i.e. Kn = 0.1) does not adequately quantify the direct transition between sub- and supercriticality. Instead, a threshold that is an order of magnitude smaller is more appropriate for this purpose.
Journal Article

Effects of End-of-Injection Transients on Combustion Recession in Diesel Sprays

2016-04-05
2016-01-0745
End-of-injection transients have recently been shown to be important for combustion and emissions outcomes in diesel engines. The objective of this work is to develop an understanding of the coupling between end-of-injection transients and the propensity for second-stage ignition in mixtures upstream of the lifted diesel flame, or combustion recession. An injection system capable of varying the end-of-injection transient was developed to study single fuel sprays in a newly commissioned optically-accessible spray chamber under a range of ambient conditions. Simultaneous high-speed optical diagnostics, namely schlieren, OH* chemiluminescence, and broadband luminosity, were used to characterize the spatial and temporal development of combustion recession after the end of injection.
Journal Article

A Novel Approach to Assess Diesel Spray Models using Joint Visible and X-Ray Liquid Extinction Measurements

2015-04-14
2015-01-0941
Spray processes, such as primary breakup, play an important role for subsequent combustion processes and emissions formation. Accurate modeling of these spray physics is therefore key to ensure faithful representation of both the global and local characteristics of the spray. However, the governing physical mechanisms underlying primary breakup in fuel sprays are still not known. Several theories have been proposed and incorporated into different engineering models for the primary breakup of fuel sprays, with the most widely employed models following an approach based on aerodynamically-induced breakup, or more recently, based on liquid turbulence-induced breakup. However, a complete validation of these breakup models and theories is lacking since no existing measurements have yielded the joint liquid mass and drop size distribution needed to fully define the spray, especially in the near-nozzle region.
Technical Paper

Comparison of Water Strategy Tools for Automotive Manufacturing

2014-04-01
2014-01-1958
Tools are now publicly available that can potentially help a company assess the impact of its water use and risks in relation to their global operations and supply chains. In this paper we describe a comparative analysis of two publicly available tools, specifically the WWF/DEG Water Risk Filter and the WBCSD Global Water Tool that are used to measure the water impact and risk indicators for industrial facilities. By analyzing the risk assessments calculated by these tools for different scenarios that include varying facilities from different industries, one can better gauge the similarities and differences between these water strategy tools. Several scenarios were evaluated using the water tools, and the results are compared and contrasted. As will be shown, the results can vary significantly.
Technical Paper

Quantifying the Life Cycle Water Consumption of a Passenger Vehicle

2012-04-16
2012-01-0646
Numerous studies have pointed out the growing need to assess the availability of water sources in numerous regions around the world as future forecasts suggest that water demands will increase significantly while freshwater resources are being depleted. In this paper, we highlight the difference between water use versus consumption and analyze the life-cycle water consumption of a car from material extraction through production, use, and final disposition/end of life and determine a car's water footprint using data from the EcoInvent database as well as data collected from literature sources. Although water use is typically metered at the factory level, water consumption (i.e., water lost through evaporation and/or incorporation into a material, part, and/or product) is much harder to quantify. As shown in this paper, the difference can be an order of magnitude or more.
Journal Article

Relationship Between Diesel Fuel Spray Vapor Penetration/Dispersion and Local Fuel Mixture Fraction

2011-04-12
2011-01-0686
The fuel-ambient mixture in vaporized fuel jets produced by liquid sprays is fundamental to the performance and operation of engines. Unfortunately, experimental difficulties limit the direct measurement of local fuel-ambient mixture, inhibiting quantitative assessment of mixing. On the other hand, measurement of global quantities, such as the jet penetration rate, is relatively straightforward. Simplified models to predict local fuel-ambient mixture have also been developed, based on these global parameters. However, experimental data to validate these models over a range of conditions is needed. In the current work, we perform measurements of jet global quantities such as vapor-phase penetration, liquid-phase penetration, spreading angle, and nozzle flow coefficients over a range of conditions in a high-temperature, high-pressure vessel.
Technical Paper

A Model for Water Consumption in Vehicle Use within Urban Regions

2011-04-12
2011-01-1152
The recent development of electric vehicles creates a new area of interest regarding their potential impacts on natural resource and energy networks. Water consumption is of particular interest, as water scarcity becomes a growing problem in many regions of the world. Water usage can be traced to the production of gasoline, as well as electricity, for regular operation of these vehicles. This paper focuses on the development of a framework to analyze the amount of water consumed in the operation of both conventional and electric vehicles. Using the Systems Modeling Language, a model was developed based on the water consumed directly in energy generation and processing as well as water consumed in obtaining and processing a vehicle's fuels. This model and framework will use the above water consumption breakdown to examine conventional and electric vehicles in metropolitan Atlanta to assess their impacts on that and other urban networks.
Technical Paper

Georgia Tech's FutureTruck Split-Parallel Hybrid SUV Design

2003-03-03
2003-01-1270
The Georgia Tech FutureTruck Team has designed a strong parallel split-hybrid powertrain for the model year 2002 Ford Explorer SUV. The modified powertrain uses a Lincoln LS 3.0L, V-6, DOHC, aluminum engine driving the rear axle. An AC-150 from AC Propulsion is coupled to the front wheels through a 3.75:1 Auburn Gear speed reducer. This split-hybrid structure fits well into the Explorer and is to manufacture. The interior cabin has been maintained in a stock configuration by carefully integrating the added instrumentation and electric drive controls into the dash and console. The toque-blending hybrid electric control is designed to be charge sustaining such that the refueling procedures match those of the stock vehicle. When fully operational, this powertrain is expected to yield a net 25% increase in fuel efficiency while lowering emissions without any sacrifice in customer acceptability.
Technical Paper

Real-Time Integrated Economic and Environmental Performance Monitoring of a Production Facility

2001-03-05
2001-01-0625
In this paper, we describe our work and experiences with integrating environmental and economic performance monitoring in a production facility of Interface Flooring Systems, Inc. The objective of the work is to create a ‘dashboard’ that integrates environmental and economic monitoring and assessment of manufacturing processes, and provides engineers and managers an easy to use tool for obtaining valid, comparable assessment results that can be used to direct attention towards necessary changes. To this purpose, we build upon existing and familiar cost management principles, in particular Activity-Based Costing and Management (ABC&ABM), and we extend those into environmental management in order to obtain a combined economic and environmental performance measurement framework (called Activity-Based Cost and Environmental Management).
Technical Paper

On-Line Identification of End Milling Cutter Runout

1996-05-01
961638
Cutter runout has been a target for monitoring and control of machining processes in view of the constraint it places on the achievable productivity. Off-line metrology based on various displacement probes such as dial indicators or proximity sensors provides information regarding the runout characteristics in a non-cutting state. However, during the actual process of machining off-line calibrations often become irrelevant since the cutting parameters and machining configuration significantly affect the behavior of runout. This paper presents a methodology of in-process identification of cutter runout in end milling based on the analysis of cutting forces. The presence of cutter runout generates cutting force components at one spindle frequency above and below the tooth passing frequency.
Technical Paper

Low Pressure Timed Injection and Control System for the Otto Cycle Engine

1963-01-01
630468
The present use of the carburetor to supply fuel to the Otto cycle engine has placed it in a difficult competitive position with the diesel engine, which has successfully operated with a fuel injection system. The purpose of this study was to consider the feasibility of utilizing a low pressure injection system for the Otto cycle engine. The proposed design is discussed in detail. As the author points out, this system will allow design changes in the engine that would be impossible if the carburetor were retained, and thus considerable improvement in performance and efficiency can be realized for the Otto cycle engine.
X