Refine Your Search

Topic

Search Results

Technical Paper

Brake Pad Life Monitoring System Using Machine Learning

2024-01-16
2024-26-0032
In the context of vehicular safety and performance, brake pads represent a critical component, ensuring controlled driving and accident prevention. These pads consist of friction materials that naturally degrade with usage, potentially leading to safety issues like delayed braking response and NVH disturbances. Unfortunately, assessing brake pad wear remains challenging for vehicle owners, as these components are typically inaccessible from the outside. Moreover, Indian OEMs have not yet integrated brake pad life estimation features. This research introduces a hybrid machine learning approach for predicting brake pad remaining useful life, comprising three modules: a weight module, utilizing mathematical formulations based on longitudinal vehicle dynamics to estimate vehicle weight necessary for calculating braking kinetic energy dissipation; and temperature and wear modules, employing deep neural networks for predictive modeling.
Technical Paper

Influence of Clean Side Duct Topology on Mass Air Flow for Gasoline Engine on Passenger Vehicle

2024-01-16
2024-26-0339
The need for effective control systems is exacerbated by tighter pollution regulations and consumer demands for highly efficiently vehicles especially in the passenger segment. The air flow estimation of engine and accordingly controlling the fuel removes the lacuna of modern gasoline engines. The hot wire type mass air flow sensor is commonly used for air flow measurement, and it generally mounted in clean side piping to prevent damage to air mass flow sensor. The right estimation of air flow is possible by getting uniform flow over the different engine operating speed and load conditions. The placement of air flow sensor becomes critical considering the engine layout and packaging constraints and meeting the sensor mounting requirements. The deviation in mounting of air flow sensor will lead to consequently impact of engine performance and emissions.
Technical Paper

ISO 26262 Functional Safety – An Approach for Compliance Readiness

2024-01-16
2024-26-0104
Electrical and Electronic systems in a vehicle are increasing manifolds with Electric and ADAS Vehicles taking the lead. There is a rapid transition happening from hardware driven vehicles to software driven vehicles. ISO 26262 is a global standard defined for functional safety (FuSa) in the automotive industry which addresses the structured design and development approach for eliminating electrical malfunctions leading to critical hazards such as fire in EVs. The standard defines specific requirements that need to be met by the safety relevant electrical system and also by development processes. Though the implementation of FuSa is crucial from vehicle safety point of view, its compliance is still a challenge majorly due to lack of awareness, in-built complexities, increase in project development time and subsequent cost. In this work, we focus on a FuSa implementation model taking into account the conventional new program development cycle.
Technical Paper

Electro-Thermal Simulation Methodology for Battery Thermal Management System (BTMS) Performance Evaluation of Li-Ion Battery Electric Vehicles

2023-09-14
2023-28-0005
In the recent years, Hybrid and Electric Vehicles (EVs) have gained attention globally due to conventional non-renewable fuels becoming expensive and increasing pollution levels in the environment. Li-ion battery EV’s are most popular because of their better power density, spe. energy density and thermal stability. With the advent of battery EV’s, concerns regarding thermal safety of vehicle and its occupants has grown among the prospective customers. Temperature plays an important role in the performance of the Li-ion battery which includes cell capacity, charge output, vehicle range, mechanical life of the battery etc. For Li-ion cells, optimum operating range should be between 15-35 °C [1], and all cells must also be maintained within a ±5 °C variation band. Computational Fluid Dynamics (CFD) simulation can be used to get better insight of cell temperature inside battery. But CFD simulation process is complex, time consuming involving multi-physics and exhaustive computations.
Technical Paper

Achievement of Superior Cabin Comfort and Maximising Energy Efficiency Using EXV in BEVs

2023-09-14
2023-28-0022
The global and Indian automotive industry is transitioning from use of Internal Combustion Engine (ICE) vehicles towards Battery Electric Vehicles (BEVs). BEV applications with high voltage (HV) battery require optimal thermal management to have a longer life, higher efficiency and to deliver superior year-round performance. In most electric vehicles, the Heating Ventilation and Air Conditioning (HVAC) system operates thru a dual loop; one loop for maintaining desired cabin comfort and a second loop to ensure optimum cell temperature for HV battery operation at varying climatic conditions, which the vehicle experiences over different seasons of the year This paper evaluates the limitations of a baseline system, in which the HVAC system consists of two parallel low-pressure cooling lines, one for maintaining cabin comfort and another for the purpose of battery cooling.
Technical Paper

Impact Analysis of an Alternate Environment Friendly Refrigerant Deployed in the Air Conditioning System of IC Engine and Electric Vehicles

2023-09-14
2023-28-0038
Today, most vehicles in developing countries are equipped with air conditioning systems that work with Hydro-Fluoro-Carbons (HFC) based refrigerants. These refrigerants are potential greenhouse gases with a high global warming potential (GWP) that adversely impact the environment. Without the rapid phasedown of HFCs under the Kigali Amendment to the Montreal Protocol and other actions, Earth will soon pass climate tipping points that will be irreversible within human time dimensions. Up to half of national HFC use and emissions are for the manufacture and service of mobile air conditioning (MAC). Vehicle manufacturers supplying markets in non-Article 5 Parties have transitioned from HFC-134a (ozone-safe, GWP = 1400; TFA emissions) to Hydro-Fluoro-Olefin, HFO-1234yf (ozone-safe, GWP < 1; TFA emissions) due to comparable thermodynamic properties. However, the transition towards the phasing down of HFCs across all sectors is just beginning for Article 5 markets.
Technical Paper

Sensitivity of LCA Bush Stiffness in Judder while Braking for Twist Blade Type Suspension in Passenger Cars

2021-09-22
2021-26-0513
This paper deals with specific NVH related issues attributed due to LCA bush stiffness and Brake rotor DTV. While the focus is on the cause of such vibration (judder while braking at 120 kmph), the presentation goes to the root-cause of judder and how various suspension/tire/brake components contribute to the generation/amplification of such vibration. Results are presented for twist blade types of vehicle suspensions, along with procedures that were developed specifically for this study and some of the actual case study. DTV-Disk thickness variation
Technical Paper

Coupled CFD Simulation of Brake Duty Cycle for Brake System Design

2021-09-22
2021-26-0360
Brake system design is intended to reduce vehicle speed in a very short time by ensuring vehicle safety. In the event of successive braking, brake system absorbs most of vehicle’s kinetic energy in the form of heat energy, at the same time it dissipates heat energy to the surrounding. During this short span of time, brake disc surface and rotor attains the highest temperatures which may cross their material allowable temperature limit or functional requirement. High temperatures on rotor disc affects durability & thermal reliability of the brake rotor. Excessive temperature on brake rotors can induce brake fade, disc coning which may result in reduced braking efficiency. To address the complex heat transfer and highly transient phenomenon during successive braking, numerical simulations can give more advantage than physical trials which helps to analyze complex 3D flow physics and heat dissipation from rotors in the vicinity of brake system.
Technical Paper

Simulink Model for SoC Estimation using Extended Kalman Filter

2021-09-22
2021-26-0382
State of Charge (SoC) estimation of battery plays a key role in strategizing the power distribution across the vehicle in Battery Management System. In this paper, a model for SoC estimation using Extended Kalman Filter (EKF) is developed in Simulink. This model uses a 2nd order Resistance-Capacitance (2RC) Equivalent Circuit Model (ECM) of Lithium Ferrous Phosphate (LFP) cell to simulate the cell behaviour. This cell model was developed using the Simscape library in Simulink. The parameter identification experiments were performed on a new and a used LFP cell respectively, to identify two sets of parameters of ECM. The cell model parameters were identified for the range of 0% to 100% SoC at a constant temperature and it was observed that they vary as a function of SoC. Hence, variable resistance and capacitance blocks are used in the cell model so that the cell parameters can vary as a function of SoC.
Technical Paper

Estimation of End of Life of Lithium-Ion Battery Based on Artificial Neural Network and Machine Learning Techniques

2021-09-22
2021-26-0218
Various vehicle manufacturers are launching electric vehicles, which are more sustainable and environmentally friendly. The major component in electric vehicles is the battery, and its performance plays a vital role. Usually, the end of life of a battery in the automobile sector is when the battery capacity reaches 80% of its maximum rated capacity. The capacity of a lithium-ion cell declines with the number of cycles. So, a semi-empirical model is developed for estimating the maximum stored capacity at the end of each cycle. The parameters considered in the model explain the changes in battery internal structure, like capacity losses at different conditions. The capacity estimated using the semi-empirical model is further taken as the inputs for estimating capacity using the Artificial Neural Network (ANN) and Machine Learning (ML) techniques i.e., Linear Regression (LR), Gaussian Process Regression (GPR), Support Vector Machine methods (SVM).
Technical Paper

Electro-Magnetic Parking Brake System for Electric Vehicles

2019-01-09
2019-26-0119
Regular vehicle has the advantage of Engine resistance even when it is not fired, hence chances of vehicle roll back on gradients will be minimized. This is not the case for Electric vehicles, which uses an electric motor that does not have any resistance offered to wheels that prevent vehicle roll back on gradient. This leads to increased load on the conventional hydraulic brakes due to absence of engine inertia. Hence, there is a need for a low cost and reliable automatic braking system which can help in holding the vehicle and assists the driver during launch in case he need to stop at a gradient. An Electromagnetic brake (EM brake) system can be used as a solution for the above-mentioned requirement. EM brake can provide hill hold and hill assist effect in addition to automatic parking brake application when the vehicle is turned-off. This system will assist anyone who need to halt the vehicle at a gradient and then relaunch it without much struggle.
Technical Paper

Refurbished and Repower: Second Life of Batteries from Electric Vehicles for Stationary Application

2019-01-09
2019-26-0156
Rising environmental concerns and depleting natural resources have resulted in faster adoption of green technologies. These technologies are pushed by the government of states through certain schemes and policies as to make the orbit shift ensuring greener environment in near future. Major actions can be easily seen in transportation sector. Hybrid Electric Vehicle (EV), EV and Fuel cell EV are being deployed on roads rapidly but even though some challenges are still unsolved such as battery cost, fast charging and life cycle of the automotive battery. Automotive batteries (Lithium ions) are declared as unfit for automotive usage after the loss of 20% to 15% of their initial capacity. Still 80% to 85% of battery capacity can be utilized in stationary applications other than automotive. Stationary application doesn’t demand high current density or energy density from the battery pack as of automotive requirements.
Technical Paper

Development of Hose and Pipe Assembly for Automatic Transmission Cooling System

2019-01-09
2019-26-0327
Rubber hose and metallic pipe with crimped joints are extensively used in steering system assembly, transmission oil cooler system, brake system etc. to carry hydraulic fluid or lubricants from one place to another. The pipe and rubber hose assembly provides necessary flexibility for complex routing on the vehicle level. Design of hose and pipe assembly for this application are different due to difference in operating pressure and temperature requirement for vehicle application. This paper defines the criteria for design and validation of hose & pipe assembly used to connect automatic transmission with the cooler. Crimped joints are validated for their separation force, leakages, ability to withstand pressure pulsations, burst test etc. Parameters which influence the hose & pipe assembly durability are pipe end flaring dimensions, type of crimping, reinforcement type, its size, material and pattern, rubber material properties, crimping force, effective crimping diameter etc.
Technical Paper

Modeling and Optimization of Pneumatic Brake System for Commercial Vehicles by Model Based Design Approach

2017-09-17
2017-01-2493
Apart from being an active safety system the brake system represents an important aspect of the vehicle dynamics. The vehicle retardation and stopping distance completely depend upon the performance of brake system and the functionality of all components. However, the performance prediction of the entire system is a challenging task especially for a complex configuration such as multi-axial vehicle applications. Furthermore, due to its complexity most often the performance prediction by some methods is limited to static condition. Hence, it is very important to have equivalent mathematical models to predict all performance parameters for a given configuration in all different conditions This paper presents the adopted system modelling approach to model all the elements of the pneumatic brake system such as dual brake valve, relay valve, quick release valve, front and rear brake actuators, foundation brake etc.
Technical Paper

Thermal Protection of Rear Mounted Engine and Its Components Using a Ventilation Fan with Unique Monitoring and Fault Diagnosis Technique

2017-03-28
2017-01-0620
The engine compartment of passenger car application contains various source which radiates the produced heat and raises the temperature level of the compartment. The rise in compartment temperature increases the body temperature of individual component. The rise in body temperature of critical components can endanger the durability or functionality of the specific component or a system in which it operates. The aim of this paper is to strategize thermal protection of the rear mounted engine and its components of a vehicle having radiator and cooling fan mounted in front. An additional ventilation fan with speed sensor is fitted alongside rear mounted engine and a unique monitoring technique framed in the EMS ECU to protect critical components like HT cables, alternators, ECUs, wiring harness etc. from thermal damage. The EMS continuously monitors the engine speed, vehicle speed and the PWM signal of ventilation fan to ensure the intended operation of the ventilation fan.
Technical Paper

Transient 1D Mathematical Model for Drum Brake System to Predict the Temperature Variation with Realistic Boundary Conditions

2017-01-10
2017-26-0299
Brake system is the most important system in the vehicle considering the overall vehicle safety and speed control. Brake applications are repetitive during a city traffic and hilly terrain on downhill gradient. Frequent braking gives rise to an overheating of the brake drum and its components. Braking operations at high temperature gives rise to problems like reduced deceleration due to loss of brake pad friction characteristics, pad softening and sticking to drum, pad distortion and wear etc. All these factors collectively result in deterioration of the braking performance and reduction of brake pad durability with time. Till date most of the thermal analysis performed for brake drum heating are through physical testing using brake system prototypes and by means of CFD tools. These methods are time consuming and expensive. There is a need for an alternative method to reduce physical trials and prototype building and reduce dependency on CFD analysis.
Technical Paper

Air Compressor Duty Cycle Reduction in Passenger Bus Application

2015-04-14
2015-01-0139
Today urban buses are equipped with more air consuming devices for an example pneumatic doors, exhaust brake, air suspension and in SCR system to name a few. This has resulted in higher air demand leading to high compressor duty cycles which cause conditions (such as higher compressor head temperatures) that may adversely affect air brake charging system performance. These conditions may require additional maintenance due to a higher amount of oil vapor droplets being passed along into the air brake system. Factors that add to the duty cycle are air suspension, additional air accessories, use of an undersized compressor, frequent stops, excessive air leakage from fittings, connections, lines, chambers or valves, etc. This paper discussed about methodology used to reduce air consumption of air consuming devices used in urban bus application. Performance assessment of air consuming devices with minimum available air pressure was conducted and found satisfactory.
Technical Paper

Innovative Concept of Front Disc Brake Module with Weight Reduction and Cost Optimisation

2014-09-28
2014-01-2505
The customer satisfaction index is higher for disc brake systems because of the advantages like less reaction time, shorter stopping distance and improved pedal feel compared to drum brake system. In current competitive market scenario and as per customer requirements, front disc brake module is becoming necessary. The brake system design is challenging task due to stringent performance meeting criteria and packaging constraints with weight optimization. Brake disc is very important component in the brake system which is expected to withstand high braking torque and dissipate heat during braking event. In existing car to replace front drum brake with disc brake module, vehicle needs to undergo legislative verifications and certifications with respect to pedal effort, stopping distance and circuit failed conditions etc.
Journal Article

Sensor less Wash Fluid Detection in Automotive Application

2013-04-08
2013-01-1338
The proposed paper describes the hardware and software method used for detection of wash fluid level in water tank used in automotive; thereby eliminating the need for sensor (Reed type switch mounted on washer bottle) for low wash fluid detection. Wash motor is used for water spray on windscreen during wash and wipe operation. The proposed system makes use of hardware circuit used to drive the wash motor usually of DC (Direct current) type and a feedback circuitry to read back the current consumed by motor during particular wash operation. This hardware system is coupled with software algorithm such that during IGNITION ON instance wash motor will be turned on such as to get motor current readings to determine amount of load operated by motor which is related to wash fluid inside the washer bottle. Motor operation is optimized so as to avoid water spray causing nuisance to user.
Technical Paper

Vehicle Level Remote Range Improvement with Low Cost Approach

2012-04-16
2012-01-0789
Basic Function: Vehicle remote is used for vehicle lock/unlock/search/Hazard lights /approach light functions for customer convenience and vehicle security system. Conventional approach: 1 Use of separate RF (Radio Frequency) receiver -Additional Cost impact. 2 High remote RF power - Reduced remote battery life and bigger remote size required 3 High sensitivity RF receiver - High cost. Low Cost approach: It involves the followings: 1 Integration of RF receiver inside the Body Control Module (BCM). 2 Low Power Remote and Optimization of Remote PCB layout to get the maximum power. 3 External wired antenna taken out from BCM and proper routine need be ensured to get the best performance. 4 BCM mounting location to get the best remote range in all vehicle directions. This paper relates to the methodology for low cost approach for the RF communication between remote transmitter and receiver with achieving the best remote performance at vehicle level condition.
X