Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Technical Paper

Energy-Optimal Allocation of a Heterogeneous Delivery Fleet in a Dynamic Network of Distribution and Fulfillment Centers

2024-04-09
2024-01-2448
This paper presents an energy-optimal plan for the allocation of a heterogeneous fleet of delivery vehicles in a dynamic network of multiple distribution centers and fulfillment centers. Each distribution center with a heterogeneous fleet of delivery vehicles is considered as a hub connected with the fulfillment centers through the routes as spokes. The goal is to minimize the overall energy consumption of the fleet while meeting the demand of each of the fulfillment centers. To achieve this goal, the problem is divided into two sub-problems that are solved in a hierarchical way. Firstly, for each spoke, the optimal number of vehicles to be allocated from each hub is determined. Secondly, given the number of allocated delivery vehicles from a hub for each spoke, the optimal selection of vehicle type from the available heterogeneous fleet at the hub is done for each of spokes based on the energy requirement and the energy efficiency of the spoke under consideration.
Technical Paper

Data-Driven Estimation of Coastdown Road Load

2024-04-09
2024-01-2276
Emissions and fuel economy certification testing for vehicles is carried out on a chassis dynamometer using standard test procedures. The vehicle coastdown method (SAE J2263) used to experimentally measure the road load of a vehicle for certification testing is a time-consuming procedure considering the high number of distinct variants of a vehicle family produced by an automaker today. Moreover, test-to-test repeatability is compromised by environmental conditions: wind, pressure, temperature, track surface condition, etc., while vehicle shape, driveline type, transmission type, etc. are some factors that lead to vehicle-to-vehicle variation. Controlled lab tests are employed to determine individual road load components: tire rolling resistance (SAE J2452), aerodynamic drag (wind tunnels), and driveline parasitic loss (dynamometer in a driveline friction measurement lab). These individual components are added to obtain a road load model to be applied on a chassis dynamometer.
Technical Paper

Driving Automation System Test Scenario Development Process Creation and Software-in-the-Loop Implementation

2021-04-06
2021-01-0062
Automated driving systems (ADS) are one of the key modern technologies that are changing the way we perceive mobility and transportation. In addition to providing significant access to mobility, they can also be useful in decreasing the number of road accidents. For these benefits to be realized, candidate ADS need to be proven as safe, robust, and reliable; both by design and in the performance of navigating their operational design domain (ODD). This paper proposes a multi-pronged approach to evaluate the safety performance of a hypothetical candidate system. Safety performance is assessed through using a set of test cases/scenarios that provide substantial coverage of those potentially encountered in an ODD. This systematic process is used to create a library of scenarios, specific to a defined domain. Beginning with a system-specific ODD definition, a set of core competencies are identified.
Technical Paper

Effect of E-Modulus Variation on Springbackand a Practical Solution

2018-04-03
2018-01-0630
Springback affects the dimensional accuracy and final shape of stamped parts. Accurate prediction of springback is necessary to design dies that produce the desired part geometry and tolerances. Springback occurs after stamping and ejection of the part because the state of the stresses and strains in the deformed material has changed. To accurately predict springback through finite element analysis, the material model should be well defined for accurate simulation and prediction of stresses and strains after unloading. Despite the development of several advanced material models that comprehensively describe the Bauschinger effect, transient behavior, permanent softening of the blank material, and unloading elastic modulus degradation, the prediction of springback is still not satisfactory for production parts. Dies are often recut several times, after the first tryouts, to compensate for springback and achieve the required part geometry.
Journal Article

Comparative Assessment of Multi-Axis Bushing Properties Using Resonant and Non-Resonant Methods

2013-05-13
2013-01-1925
Shaped elastomeric joints such as engine mounts or suspension bushings undergo broadband, multi-axis loading; however, in practice, the elastomeric joint properties are often measured at stepped single frequencies (non-resonant test method). This article helps provide insight into multi-axis properties with new benchmark experiments that are designed to permit direct comparison between system resonant and non-resonant identification methods of the dynamic stiffness matrices of elastomeric joints, including multi-axis (non-diagonal) terms. The joints are constructed with combinations of inclined elastomeric cylinders to control non-diagonal terms in the stiffness matrix. The resonant experiment consists of an elastic metal beam end-supported by elastomeric joints coupling the in-plane transverse and longitudinal beam motion.
Technical Paper

Testing and Modeling of Elevator Door Retention During Hallway Applied Lateral Loads

2009-06-09
2009-01-2273
Most do not consider there to be a risk in pushing on, bumping into or falling against an elevator door from the hallway side. However, the lack of the elevator cars presence alone, and the potential for severe injury or even death make this seemingly mundane situation potentially critical. Standards exist relative to such situations, and past and current designs attempt to account for this possibility, still people get injured interacting with these doors every year. In order to evaluate a real-world elevator door system's ability to withstand the quasi-static and impactive loads that can be placed on it by the general public during its life, both intentionally and unintentionally, a predictive tool is needed. This work represents the combination of empirical laboratory testing and numerical modeling of a typical elevator door system exposed to quasi-static and dynamic loading.
Technical Paper

Correlation of a CAE Hood Deflection Prediction Method

2008-04-14
2008-01-0098
As we continue to create ever-lighter road vehicles, the challenge of balancing weight reduction and structural performance also continues. One of the key parts this occurs on is the hood, where lighter materials (e.g. aluminum) have been used. However, the aerodynamic loads, such as hood lift, are essentially unchanged and are driven by the front fascia and front grille size and styling shape. This paper outlines a combination CFD/FEA prediction method for hood deflection performance at high speeds, by using the surface pressures as boundary conditions for a FEA linear static deflection analysis. Additionally, custom post-processing methods were developed to enhance flow analysis and understanding. This enabled the modification of existing test methods to further improve accuracy to real world conditions. The application of these analytical methods and their correlation with experimental results are discussed in this paper.
Technical Paper

Combining Flow Losses at Circular T-Junctions Representative of Intake Plenum and Primary Runner Interface

2007-04-16
2007-01-0649
The interface between a plenum and primary runner in log-style intake manifolds is one of the dominant sources of flow losses in the breathing system of Internal Combustion Engines (ICE). A right-angled T-junction is one such interface between the plenum (main duct) and the primary runner (sidebranch) normal to the plenum's axis. The present study investigates losses associated with the combining flow through these junctions, where fluid from both sides of the plenum enters the primary runner. Steady, incompressible-flow experiments for junctions with circular cross-sections were conducted to determine the effect of (1) runner interface radius of 0, 10, and 20% of the plenum diameter, (2) plenum-to-runner area ratio of 1, 2.124, and 3.117, and (3) runner taper area ratio of 2.124 and 3.117. Mass flow rate in each branch was varied to obtain a distribution of flow ratios, while keeping the total flow rate constant.
Technical Paper

Tube Hydroforming - State-of-the-Art and Future Trends

1999-03-01
1999-01-0675
With the availability of advanced machine designs and controls, tube hydroforming has become an economic alternative to various stamping processes. The technology is relatively new so that there is no large “knowledge base” to assist the product and process designers. This paper reviews the fundamentals of tube hydroforming technology and discusses how various parameters, such as tube material properties, pre-form geometry, lubrication and process control affect product design and quality. In addition, relations between process variables and achievable part geometry are discussed. Finally, using examples, the status of the current technology and critical issues for future development are reviewed.
Technical Paper

Study of the Flow Field Development During the Intake Stroke in an IC Engine Using 2–D PIV and 3–D PTV

1999-03-01
1999-01-0957
The evolution of the flow field inside an IC engine during the intake stroke was studied using 2 different experimental techniques, namely the 2–D Particle Image Velocimetry (2–D PIV) and 3–D Particle Tracking Velocimetry (3–D PTV) techniques. Both studies were conducted using a water analog engine simulation rig. The head tested was a typical pent–roof head geometry with two intake valves and one exhaust valve, and the simulated engine operating point corresponded to an idle condition. For both the 2–D PIV and 3–D PTV experiments, high–speed CCD cameras were used to record the motion of the flow tracer particles. The camera frame rate was adjusted to correspond to 1/4° of crank angle (CA), hence ensuring excellent temporal resolution for velocity calculations. For the 2–D PIV experiment, the flow field was illuminated by an Argon–ion laser with laser–sheet forming optics and this laser sheet was introduced through a transparent piston crown to illuminate the center tumble plane.
Technical Paper

Implementing Computer Simulation into the Concept to Product Process

1999-03-01
1999-01-1003
Process simulation for product and process design is currently being practiced in industry. However, a number of input variables have a significant effect on the accuracy and reliability of computer predictions. A study was conducted to evaluate the capability of finite element method (FEM) simulations for predicting part characteristics and process conditions in forming complex-shaped, industrial parts. In industrial applications, there are two objectives for conducting FEM simulations of the stamping process: (1) to optimize the product design by analyzing formability at the product design stage and (2) to reduce the tryout time and cost in process design by predicting the deformation process in advance during the die design stage. For each of these objectives, two kinds of FEM simulations are applied.
Technical Paper

Consumer Braking Performance Information Initiative

1999-03-01
1999-01-1291
A test procedure that rates brake performance must control variability so that measured differences between vehicles are real. Tests were conducted using standard brake test procedures with three drivers in three cars on wet and dry asphalt with the ABS working and disabled. The differences between vehicles were greater than differences due to ABS condition, surface condition, and drivers. The procedure measured differences between all the vehicles with statistical certainty but used many replications and drivers. If only large differences in performance need to be distinguished, fewer replications and drivers will be needed.
Technical Paper

Suspension Parameter Measurement Using Side-Pull Test To Enhance Modeling of Vehicle Roll

1999-03-01
1999-01-1323
This paper describes a new laboratory test facility for measuring suspension parameters that affect rollover. The Side-Pull mechanism rolls the test vehicle through a cable attached rigidly at its center of gravity (CG). Changes in wheel camber and wheel steer angles are measured as a function of body roll angle. The roll test simulates a steady-state cornering. Thus, both compliance and kinematic forces are fed simultaneously to the vehicle as they would be applied in a real cornering situation. The lateral load transfer, and roll angle as a function of simulated lateral acceleration is determined. The Side-Pull Roll Measurement has advantages over the conventional roll tests where the rolling force couple is applied vertically. The Side-Pull mechanism rolls the vehicle in a unrestricted way with horizontal forces applied at the tire / pad contact and the CG location. Thus, the measurements take into account coupling of compliance with roll.
Technical Paper

Applications of Computer Simulations for Part and Process Design for Automotive Stampings

1997-02-24
970985
Recent studies in sheet metal forming, conducted at universities world wide, emphasize the development of computer aided techniques for process simulation. To be practical and acceptable in a production environment, these codes must be easy to use and allow relatively quick solutions. Often, it is not necessary to make exact predictions but rather to establish the influence of process variables upon part quality, tool stresses, material flow, and material thickness variation. In cooperation with its industrial partners, the ERC for Net Shape Manufacturing of the Ohio State University has applied a number of computer codes for analysis and design of sheet metal forming operations. This paper gives a few selected examples taken from automotive applications and illustrates practical uses of computer simulations to improve productivity and reduce tool development and manufacturing costs.
Technical Paper

Process Simulation to Improve Quality and Increase Productivity in Rolling, Ring Rolling and Forging

1991-02-01
910142
The practical and proven use of computers in forming technology include: CAD/CAM for die making; transfer of geometric data from the customer's CAD/CAM system to that of the supplier and vice versa; application of artificial intelligence and expert systems for part and process design; simulation of metal flow to eliminate forging defects; prediction and optimization of process variables; and analysis of stresses in dies as well as prevention of premature die failure. Intelligent use of this information can lead to significant gains in product quality and productivity. This paper presents three examples of application of process simulation to forming : rolling, ring rolling and forging.
X