Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Comparison of Emissions Measurement Methods based on Chassis Dynamometer Testing

2021-04-06
2021-01-0611
Engine and vehicle tailpipe emissions can be measured in laboratories equipped with engine dynamometers and chassis dynamometers, respectively. In addition to laboratory testing, there is an increase in interest to measure on-road vehicle emissions using portable emissions measurement systems in order to determine real-driving emissions. Current methods to quantify engine, vehicle tailpipe, and real-driving emissions include the raw continuous, dilute continuous, and dilute bag measurement methods. Although the dilute bag measurement method is robust, recent improvements to the raw and dilute continuous measurement methods can account for the time delay between the probe tip and analyzer in addition to gas transport dynamics in order to reliably recover the tailpipe concentration signals. These improvements significantly increase the reliability of results using the raw and dilute continuous measurement methods, making them possible alternatives to the bag method.
Technical Paper

Fuel and System Interaction Effects on Urea-SCR Control of NOx in Diesel Exhaust Aftertreatment

2006-04-03
2006-01-0638
This work considers the performance of a NOx control system on a diesel engine and the interaction between the NOx and particulate control devices. A commercial urea-selective catalytic reduction (SCR) catalyst (twin catalytic reactors used in series) was characterized for the impact of nitrogen dioxide (NO2) on the ammonia consumption, production of nitrous oxide (N2O) and relative selectivity of the urea-SCR catalyst for NO2 versus NO when the SCR reactors were positioned downstream of a catalyzed diesel particulate filter (DPF). The aqueous urea solution was injected into the exhaust by using a twin fluid, air-assisted atomizer. It was possible to observe the role of NO2 due to the catalyzed diesel particulate filter (DPF) upstream of the SCR catalyst. This catalyzed DPF oxidizes nitric oxide (NO) in the engine-out emissions to NO2. Further, it uses NO2 to oxidize particulate matter (PM).
Technical Paper

Partial Oxidation Products and other Hydrocarbon Species in Diesel HCCI Exhaust

2005-10-24
2005-01-3737
A single cylinder engine was operated in HCCI mode with diesel-range fuels, spanning a range in cetane number (CN) from 34 to 62. In addition to measurements of standard gaseous emissions (CO, HC, and NOx), multiple sampling and analysis techniques were used to identify and measure the individual exhaust HC species including an array of oxygenated compounds. A new analytical method, using liquid chromatography (LC) with electrospray ionization-mass spectrometry (ESI-MS) in tandem with ultraviolet (UV) detection, was developed to analyze the longer chain aldehydes as well as carboxylic acids. Results showed an abundance of formic and butyric acid formation at or near the same concentration levels as formaldehyde and other aldehydes.
Technical Paper

The Effects of Engine Speed and Injection Pressure Transients on Gasoline Direct Injection Engine Cold Start

2002-10-21
2002-01-2745
Results are presented from an experimental study of the effects of engine speed and injection pressure transients on the cold start performance of a gasoline direct injection engine operating on iso-octane. The experiments are performed in an optically-accessible single-cylinder research engine modified for gasoline direct injection operation. In order to isolate the effects of the engine speed and injection pressure transients, three different cold start simulations are used. In the first cold start simulation the engine speed and injection pressure are constant. In the second cold start simulation the injection pressure is constant while the engine speed transient of an actual cold start is simulated. In the third cold start simulation both the engine speed and the injection pressure transients of an actual cold start are simulated.
Technical Paper

Implementation of Detailed Chemical Mechanisms into Multidimensional CFD Using in situ Adaptive Tabulation: Application to HCCI Engines

2002-10-21
2002-01-2773
A storage/retrieval scheme - in situ adaptive tabulation (ISAT) [1] - is used to implement detailed chemistry in a multidimensional engine CFD code. The emphasis is on predicting autoignition in nearly homogeneous and moderately non-homogeneous mixtures (HCCI); preliminary results for highly non-homogeneous direct-injection autoignition also are reported. Speedups approaching a factor of 100 have been realized with ISAT compared to direct integration of the chemical source terms; factors of five-to-ten are more readily obtainable. In the standard ISAT method, table size increases as the square of the number of chemical species in the reaction mechanism; here linear scaling is achieved by limiting the set of independent tabulation variables, while still retaining the full chemical mechanism. A key to effective use of storage/retrieval is judicious specification of the control parameters; guidelines for parameter specification are presented.
Technical Paper

A Spark Ignited Engine and Flow Reactor Study of the Effect of an Organic Fuel Additive on Hydrocarbon and Nox Emissions

1998-05-04
981455
An experimental study was conducted to determine if an organic fuel additive could reduce engine out hydrocarbon and NOx emissions. A production four cylinder spark ignited engine with throttle body fuel injection was used for the study. A full boiling range base fuel, an additized base fuel, a base fuel with methyl tertiary butyl ether (MTBE) and a base fuel with MTBE and additive were used in the engine tests. Additive concentration was 1/2% by mass. Hydrocarbon and NOx measurements were recorded for 11 load/speed conditions. Hydrocarbon speciation data was taken at two of these conditions. The data from the experiments was analyzed in a pair-wise fashion for the fuels with and without the additive to determine whether statistically significant changes occurred.
Technical Paper

Exhaust Emission Characteristics of a Small 2-Stroke Cycle Spark Ignition Engine

1973-02-01
730159
The 2-stroke cycle engine has not been subject to extensive exhaust emission research because small vehicles which commonly employ 2-stroke cycle engines are not covered by federal emission regulations. This paper reports the results of a 2-stroke engine study conducted to determine the level of the unburned hydrocarbon (HC) emission and its source. Other gas phase exhaust emissions are reported as well. Exhaust composition curves were generated from a material balance model with HCs included as a product. The calculated curves were used in the analysis of the experimental data. It was determined that 25-40% of the fuel air mixture was short-circuited to the exhaust in the scavenging process which resulted in unburned HC concentrations of 5000-1000 ppm hexane equivalent. It was found that short-circuiting is a function of load but is relatively independent of speed.
Technical Paper

The Ignition of Hydrocarbon Fuel Droplets in Air

1968-02-01
680465
The ignition of single fuel droplets in air is modeled according to the time-varying conditions within the droplet and the boundary layer around the droplet. Ignition is hypothesized when some point in the boundary layer has experienced a sufficiently severe history in terms of pressure, temperature, equivalence ratio, and time to auto ignite. Experiments were conducted with a wide variety of fuels to validate the model. A critical size concept for ignition was predicted by the model and substantiated by the experiments.
X