Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Flame Diagnostics in the Combustion Chamber of Boosted PFI SI Engine

2007-09-16
2007-24-0003
The growing demands on fuel economy and always stricter limitations on pollutant emissions has increased the interest in the ignition phenomena to guarantee successful flame development for all the spark ignition (SI) engine operating conditions. The initial size and the growth of the flame have a strong influence on the further development of the combustion process. In particular, for the new FIAT generation of turbocharged SI engines, the first times of spark ignition combustion are not yet fully understood. This is mainly due to the missing knowledge concerning the detailed physical and chemical processes taking place during the all set of the flame propagation. These processes often occur simultaneously, making difficult the interpretation of measurements. In the present paper, flame dynamic was followed by UV-visible emission imaging in an optical SI engine.
Technical Paper

The Diesel Exhaust Aftertreatment (DEXA) Cluster: A Systematic Approach to Diesel Particulate Emission Control in Europe

2004-03-08
2004-01-0694
The DEXA Cluster consisted of three closely interlinked projects. In 2003 the DEXA Cluster concluded by demonstrating the successful development of critical technologies for Diesel exhaust particulate after-treatment, without adverse effects on NOx emissions and maintaining the fuel economy advantages of the Diesel engine well beyond the EURO IV (2000) emission standards horizon. In the present paper the most important results of the DEXA Cluster projects in the demonstration of advanced particulate control technologies, the development of a simulation toolkit for the design of diesel exhaust after-treatment systems and the development of novel particulate characterization methodologies, are presented. The motivation for the DEXA Cluster research was to increase the market competitiveness of diesel engine powertrains for passenger cars worldwide, and to accelerate the adoption of particulate control technology.
Technical Paper

Characterization of CR diesel exhaust by UV-visible extinction and scattering spectroscopy

2001-09-23
2001-24-0070
Non-intrusive diagnostic techniques based on broadband (190-550 nm) extinction and scattering spectroscopy were applied at undiluted exhaust Common- Rail (CR) diesel engine in real time. The influence of load and Exhaust Gas Recirculation (EGR) on soot mass concentration, size distribution of emitted particles and NO concentration was analyzed. NO concentration was evaluated by ""in-situ"" ultraviolet-visible absorption measurements and compared with those obtained by conventional analyzer. The extinction and scattering spectra were compared with those evaluated by the Lorenz-Mie model for spherical particles in order to retrieve the size, the number concentration of the emitted particles and particulate mass. The optical measurements showed that new generation diesel engines, in spite of a drastic reduction of the exhaust mass concentration, caused the emission in the atmosphere of high number concentration of carbonaceous nanoparticles.
Technical Paper

Evaluation of the Effects of a New Combustion System and Catalyst on Engine Emissions

1990-10-01
902083
The present paper reports the results of an experimental investigation carried out on a four-stroke single- cylinder D.I. diesel engine (100 x 95mm bore x stroke) with the aim to evaluate the effects of a four-lobe square combustion chamber on the gaseous and particulate emissions. Fluid-dynamic behaviour of the axisymmetric toroidal and four-lobe square chambers was investigated by Laser Doppler Anemometry. Engine tests at 2000 and 3000 rpm for different start of combustion (SOC) and A/F ratio are reported. Particulate, HC and NOx emission index measured under different operating conditions are given. In addition, the volatile content of the particulates produced from the two chambers at various engine operative conditions was measured by thermogravimetric analysis (TGA). Finally, the catalytic activity of a metal-oxide-based catalyst in the combustion of particulate was also evaluated by TGA.
X