Refine Your Search

Topic

Search Results

Journal Article

Design of a Flywheel Based Energy Storage and Distribution System for Rural Villages in China

2009-04-20
2009-01-0525
There are 30 million people in remote, rural communities in China without access to electricity. The government of China has initiated an ongoing effort to provide constant, reliable power to these citizens. Renewable energy is being utilized to solve this problem, which necessitates the use of a storage medium for energy, because renewable energies (i.e. wind and/or solar power) are inherently intermittent, variable, and largely unpredictable. By storing excess energy when it is plentiful (for a maximum feasible time of two days) and distributing it to the community in times of scarcity, the intermittent power is effectively leveled and auxiliary power is provided. A high-inertia flywheel was designed for this application because of its simplicity, ease of maintenance, low cost, and reliability. This design addresses many problems including bearing losses, aerodynamic losses, and distribution losses. The proposed design consists of a six spoke layout with a large outer ring.
Technical Paper

Investigation of Cold Start Capability of a Briggs and Stratton Engine Using Jet A Fuel and Microwave Plasma Ignition

2009-04-20
2009-01-1057
There is a growing interest in improving engine versatility through the capacity to run on more than one fuel. To aid in this effort, the research presented in this paper investigated a novel system using microwave plasma ignition designed with the goal of allowing standard gasoline engines to run on non-standard fuels. The fuel used was Jet A. The test engine was a Briggs and Stratton single cylinder engine outfitted with an aftermarket fuel injection system and the microwave plasma ignition system. The tests performed were to determine the cold-start temperature limit, the lowest temperature at which the engine could be repeatedly started, using microwave plasma ignition with a conventional spark plug as a reference. A detailed system outline is presented, as well as results and conclusions. Recommendations for further research are also suggested.
Technical Paper

High-Level Modeling of an RF Pulsed Quarter Wave Coaxial Resonator with Potential use as an SI Engine Ignition Source

2008-04-14
2008-01-0089
Significant environmental and economic benefit could be obtained if spark ignited (SI) engines could be made more efficient. Engine operation using leaner fuel air mixtures at higher power densities and pressures promise higher thermal efficiencies. Mixtures required for such operation are often difficult to ignite with traditional spark plugs. In pursuit of better ignition sources, this paper presents a high-level model of an alternative microwave plasma ignition source under development. In this publication, atmospheric measurements of a pulsed microwave ignitor are used to derive an empirical model that will allow for control and increased energy delivery to the device. The model accounts for a simplistic plasma formation delay, a drop in resonance frequency as a result of plasma formation, and a subsequent change in associated microwave reflection coefficient.
Technical Paper

Experimental Investigation of Dielectrics for Use in Quarter Wave Coaxial Resonators

2007-04-16
2007-01-0256
Current research has involved manipulating the ignition inside of the combustion chamber. It has been demonstrated that an RF plasma flame can be generated from microwaves in a Quarter Wave Coaxial Cavity Resonator (QWCCR). By using this method, it may become possible for researchers to improve combustion and ignition characteristics of a modern internal combustion engine. Filling a plasma cavity with an appropriate dielectric medium can both alter electromagnetic properties and provide a suitable protective barrier to the harsh condition inside of a combustion cylinder. It is the purpose of this paper is to investigate both the operating frequency and quality factor of dielectric-filled cavities, as well as to suggest dielectrics that would be suitable for such an application.
Technical Paper

A Configuration for a Continuously Variable Power-Split Transmission in Hybrid-Electric Vehicle Applications

2004-03-08
2004-01-0571
Continuously variable transmissions (CVTs) are usually used in small vehicles due to power limitations on the variable elements. Continuously variable power-split transmissions (CVPST) were developed in order to reduce the fraction of power passing through the variable elements [1,2]. The configuration presented in this paper includes a planetary gear train (PGT), which in combination with the CVT allows the power to be split and therefore increase the power envelope of the system. The PGT also provides a branch that can be used in a hybrid electric vehicle (HEV) operation through an electric motor. A conceptual design of a CVPST for a HEV is presented in this paper. The objectives are to show the different operational modes, with diagrams, perform a power analysis, develop the velocity and force equations and finally show the performance of the system with an example application.
Technical Paper

Rotary Engines – A Concept Review

2003-10-27
2003-01-3206
The basic design of a purely rotary motion engine has potentially many advantages over the conventional piston-crank internal combustion engine. Although only one rotary engine has been successfully placed into production, rotary mechanisms still show promise in the market place. A comprehensive review of rotary engine concepts is presented with an emphasis placed on the last 30 years. Suggestions are made as to where research concentrations should be placed to improve the progress of a rotary engine.
Technical Paper

The Coaxial Cavity Resonator as a RF IC Engine Ignition Source

2001-03-05
2001-01-0987
The Quarter Wave Coaxial Cavity Resonator (QWCCR) plasma igniter is designed, from previous theoretical work, as an ignition source for an internal combustion engine. The present research has explored the implementation of the QWCCR into an internal combustion (IC) engine. The QWCCR design parameters of inner conductor length, loop geometry, and loop position were varied for two igniters of differing operating frequency. Variations of the QWCCR radio frequency (RF) parameters, as a function of engine geometry, were studied by placing the igniter in a combustion chamber and manually varying the crank position. Three identical igniters were fitted with dielectric inserts and the parameters were studied before and after ignition was sustained in a twin-cylinder engine. Optimal resonator geometries were determined. Radio frequency parameter invariance was found with respect to crank angle and piston distance. The first successful IC engine ignition using a QWCCR was achieved.
Technical Paper

Modeling the Radio Frequency Coaxial Cavity Plasma Ignitor as an Internal Combustion Engine Ignition System

1998-02-23
980168
A quarter-wave radio frequency coaxial cavity plasma ignitor can be used to generate a combustion-initiating energy source in an internal combustion engine. This paper outlines research results on the development of such an ignitor. The system, which operates in the 820 - 900 MHz frequency range, uses a high Q quarter-wave cavity that generates plasma when resonating. Pressure testing has shown that the device can generate plasmas at spark ignition compression pressures. A resonator operating at these frequencies has been attached to a static combustion chamber and modeled numerically in order to determine the operational characteristics of the device in a combustion chamber.
Technical Paper

Thermal Modeling of an Axial Vane Rotary Engine

1998-02-01
980123
A complete three-dimensional thermal finite element analysis has been performed for the Beta version of an axial vane rotary engine. This work investigated the effects of the heat flow for two different geometric designs (kinematic inversions): rotor turning with vane turning and cams turning with a non-rotating vane. The output from a modified zero dimensional combustion code was used to establish the thermal boundary conditions in the finite element model. An iterative procedure between the thermal finite element model and the zero dimensional code was used to obtain the component wall temperature profile. Updating the combustion model wall temperature resulted in different thermal characteristics than those from the constant wall temperature solution. The thermal analysis provided a quantitative comparison of the different geometric versions of the engine, showing where improvements must be made.
Technical Paper

Automobile Body Panel Color Measurement Test

1997-02-24
970995
It has been proposed that an automated remote color inspection of automobile body panels is possible with a reasonably precise color measurement. This paper outlines a test of a new 3D color measurement technology as applied to this task and presents the results of the first test. A camera is set up several feet away from a car body; a 3D orientation measuring system takes both 3D and color data from the car. The raw data is presented as a set of 3D graphs; the geometry-corrected data is also provided. Statistical analysis is presented to indicate system precision.
Technical Paper

Zero Dimensional Combustion Modeling of an Axial Vane Rotary Engine

1997-02-24
970069
A zero dimensional combustion model of an axial vane rotary engine has been developed. The engine is a positive displacement mechanism that permits the four “stroke” action to occur in one revolution of the shaft with a minimum number of moving components. Current modeling efforts for this engine require improved estimations of engine parameters such as chamber pressure, chamber wall temperature, gas temperature, and heat loss. The purpose of this investigation was to develop a zero dimensional combustion model that predicts the above-mentioned parameters in a quick and accurate manner for a spark ignition or compression ignition version of the engine. For this effort, NASA's ZMOTTO code was modified. Piston engine data and the results from the modified ZMOTTO code are in good agreement.
Technical Paper

Investigation of a Radio Frequency Plasma Ignitor for Possible Internal Combustion Engine Use

1997-02-24
970071
This paper outlines the development process of a radio frequency (RF) plasma ignitor and its application to internal combustion engines. The system features a high Q quarter-wave coaxial cavity resonator that serves as an electric field magnifier and as a discharge device. The preliminary characteristics of the cavity have been studied by the construction and operation of larger scaled devices. Testing has been performed using these devices in a testing apparatus operating under ambient conditions. Once an analysis of the large-scale device is complete, a smaller device, more inclined to interfacing with a standard engine, will be constructed and tested on a full scale engine. The final device is intended to operate in the 800-1500 MHz range.
Technical Paper

Hydrodynamic Mobility Analysis of the Vane Lift Mechanism for the Rand Cam™ Engine

1995-02-01
950450
In this paper, a new method for the hydro-dynamic analysis of a sliding cylinder in a fully lubricated parallel track is presented. The method is an extension of Booker's “Mobility Method” (developed for cylindrical journal bearings) to the case of sliding cylinders, in which the clearance between the track and the cylinder, the viscosity of the lubricant, the radius and length of the pin, the sliding velocity and the applied transverse load determine the hydrodynamic behavior of the cylinder. In the Rand Cam™ Engine [1]*, the axicycloidal motion of vanes is driven by a rotor and a cylindrical cam, and one of the alternative designs to provide this function is based on a cylindrical pin sliding within a track which follows the profile of the motion of the main cams of the engine. This function is very important for the engine, since it separates the load bearing function from the sealing function left to the apex-like seals.
Technical Paper

Rotor Shaft Bearing Analysis for Selected Rand Cam™ Engine Configurations

1995-02-01
950449
Analysis of two types of bearings has been performed for the rotor shaft of the Rand Cam™ engine. Rolling element bearings and a combination of journal and thrust bearings for selected engine configurations have been considered. The engine configurations consist of four, five, six, seven, and eight vanes. The bearing geometry and orientation was also addressed. This analysis is crucial due to the potentially large axial loading on the bearings and the need for the bearing arrangement to be compact and reliable. An emphasis was placed on the combination of fluctuating axial and radial loads and the resulting effect upon the bearings. Tapered roller bearings were found to be effective. However, a combination of journal and thrust bearings is a more compact bearing arrangement for this application. The eight vane configuration is the most desirable configuration based upon the bearing analysis.
Technical Paper

The Rand-Cam Engine: A Pistonless Four Stroke Engine

1994-03-01
940518
The Rand-Cam engine is a positive displacement machine, operating on a four stroke cycle, which consists of a rotor with multiple axial vanes forming combustion chambers as the rotor and vanes rotate in a cam shaped housing. The cam housing, consisting of two “half-housings” or stators, contains a toroidal trough of varying depth machined into each stator. The two stators are phased so that the shallowest point on one trough corresponds to the deepest on the other. A set of six vanes, able to move axially through machined holes in the rotor, traverses the troughs creating six captured zones per side. These zones vary in volume with rotor rotation. Since each trough has two deep sections and two shallow sections with ramps in between, full four stroke operation is obtained between each pair of vanes in each trough, corresponding to twelve power “strokes” per revolution.
Technical Paper

Basic Design of the Rand Cam Engine

1993-03-01
930062
The Rand Cam engine is a novel design which avoids the use of pistons in favor of a cavity of varying size and shape. A set of vanes protrudes from a rotor into a circular trough in a stator. The vanes seal to the walls and base of the trough, which is of varying depth, and progress around the trough with rotation of the rotor. These vanes therefore pass through the rotor and are constrained to move parallel to the rotational axis. Intake and exhaust processes occur through ports in the stator wall which are revealed by the passing vanes. Advantages of the basic design include an absence of valves, reduction in reciprocating masses, presence of an integral flywheel in the rotor and strong fluid movement akin a swirl induced by the relative velocity between the rotor and stator.
Technical Paper

Engineering Modeling and Synthesis of a Rand Cam Engine Through CAD Parametric Techniques

1993-03-01
930061
In this paper an approach is presented for the system parameterization and synthesis of a Rand-Cam® Engine configuration based on an axial-cylindrical cam driven mechanism. This engine consists of a stationary axial-cylindrical cam on which axially moving pistons (vanes) sweep around the cam as they are driven by the rotor, providing the volume displacement as the rotor delivers the rotary output torque directly to the shaft. It has been documented that this engine configuration has some unique features that make it particularly suitable for high power to weight ratio applications. The modeling strategy makes use of higher order curve and surface modeling techniques and object modeling approaches based on profile extruding, blending operations and constructive solid geometry. Some of the resulting models are further used for finite element engineering analysis through a programmatic logic built into the parameterized general model.
Technical Paper

RF Plasma Ignition System Concept for Lean Burn Internal Combustion Engines

1992-08-03
929416
This paper describes a Radio Frequency (RF) plasma ignitor concept intended for application to internal combustion engines. This system features a high Q quarter-wave coaxial cavity resonator, of simple construction, serving as a tuning element in the RF power supply, a voltage magnifier, and a discharge device attached to the combustion chamber. The resonator is filled with a dielectric and open at the discharge end. The center conductor is terminated with a revolute solid capacitive electrode which concentrates the associated electric field. This non-uniform electric field within the air/fuel mixture creates a corona discharge plasma which is excited at the RF operating frequency and the resulting ionic species recombine to initiate combustion. The RF excitation, relative to DC, reduces breakdown voltage and electrode degradation.
Technical Paper

Initial Investigations of a Novel Engine Concept for Use with a Wide Range of Fuel Types

1992-02-01
920057
The recent oil crisis has once again emphasized the need to develop both fuel efficient engines and alternately fueled engines, particularly for automotive applications. Engines which burn coal or coal pyrolysis products are attractive, but ignition delay and metal erosion problems continue to limit high speed operation of such engines. Further, the throttled spark ignition engine often used with methanol and natural gas does not prove an efficient or tolerant device for the combustion of a wide range of fuel. Therefore, an novel approach must be taken in order to achieve the efficient and flexible operation of such an engine. A novel design of a fuel tolerant engine suitable for burning coal fuels separates the combustion from the piston in order to have more careful flame control and to exclude the particulate matter from the engine's piston rings.
Technical Paper

Use of a Cruciform Shaped Mechanism for Application to Internal Combustion Engines for Portable Auxiliary Power Equipment

1991-11-01
911269
The unique shape of cruciform engines provides an alternative to the typical in-line or “V-shaped” engines. The planar nature of the mechanism provides either a low profile or thin engine with the ability to stack many 4 cylinder banks into a compact large engine. The sinusoidal motion inherent in this mechanism provides unique balancing aspects which ultimately further reduce the size of the power plant. The compact cruciform shape lends itself to applications in portable hydraulic pumps, compressors, hydraulic motors, internal combustion engines, etc.
X