Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Influence of Calcium-Based Additives with Different Properties on Abnormal Combustion in an SI Engine

2016-11-08
2016-32-0007
Technologies for further improving vehicle fuel economy have attracted widespread attention in recent years. However, one problem with some approaches is the occurrence of abnormal combustion such as low-speed pre-ignition (LSPI) that occurs under low-speed, high-load operating conditions. One proposed cause of LSPI is that oil droplets diluted by the fuel enter the combustion chamber and become a source of ignition. Another proposed cause is that deposits peel off and become a source of ignition. A four-stroke air-cooled single-cylinder engine was used in this study to investigate the influence of Ca-based additives having different properties on abnormal combustion by means of in-cylinder visualization and absorption spectroscopic measurements. The results obtained for neutral and basic Ca-based additives revealed that the former had an effect on advancing the time of autoignition.
Technical Paper

A Study on the Practical Application of Cellulosic Liquefaction Fuel for Diesel Engine

2015-11-17
2015-32-0801
In recent years, it has been expected the conversion of wasted biomass to industry available energy. In this study, 80 wt.% of wood and 20 wt.% of polypropylene were liquefied by the mineral oil used as solvent. The liquefied material was distilled, and distillation fraction of temperature from 493 to 573 K was recognized as light oil fraction CLF (Cellulose Liquefaction Fuel) and that from 378 to 493 K was recognized as naphtha fraction CLF. CLFs were blended with light oil and, in engine performance test, mixing ratio of light oil fraction CLF was 5 wt.%, and in vehicle running test, weight mixing ratios were 5 or 10 wt.%. In engine performance test, indicator diagrams and rate of heat releases of light oil fraction CLF 5 wt.% mixed light oil were almost equivalent to those of light oil in all load conditions, and engine performance and exhaust gas emissions were also almost equivalent to light oil.
Technical Paper

A Study of the Effects of Varying the Supercharging Pressure and Fuel Octane Number on Spark Ignition Engine Knocking using Spectroscopic Measurement and In-cylinder Visualization

2013-10-15
2013-32-9030
Engine downsizing with a turbocharger / supercharger has attracted attention as a way of improving the fuel economy of automotive gasoline engines, but this approach can be frustrated by the occurrence of abnormal combustion. In this study, the factors causing abnormal combustion were investigated using a supercharged, downsized engine that was built by adding a mechanical supercharger. Combustion experiments were conducted in which the fuel octane number and supercharging pressure were varied while keeping the engine speed, equivalence ratio and intake air temperature constant. In the experiments, a visualization technique was applied to photograph combustion in the combustion chamber, absorption spectroscopy was used to investigate the intermediate products of combustion, and the cylinder pressure was measured. The experimental data obtained simultaneously were then analyzed to examine the effects on combustion.
Technical Paper

Performance of Air Motor with Regenerating System Designed for Propulsion of Bicycle

2011-11-08
2011-32-0615
An air motor with regenerating system for propulsion of a bicycle was newly developed. An air motor was driven by the compressed air and the bicycle was propelled. When the bicycle was decelerating, the air motor was acted as a compressor and the kinetic energy of bicycle was regenerated as compressed air. The purpose of this study is to elucidate the performance of air motor and driving characteristic of bicycle. The air motor in this study was the reciprocating piston type like an internal combustion engine, and cylinder arrangement was in-line two-cylinder. The output power increased with an increase of supply air pressure although the maximum cylinder pressure was less than the supply air pressure. The output power decreased as the revolution increased due to friction loss. The maximum cylinder pressure reduced as the rotational frequency increased because the inlet valve opening duration was decreased.
Technical Paper

7 Experimental Research Concerning the Effect of the Scavenging Passage Length on the Combustion State and Exhaust Gas Composition of a Small Two-stroke Engine

2002-10-29
2002-32-1776
This paper presents the results of experiments conducted with a two-stroke engine that was the world's first such engine to comply with the emissions regulations applied to small off-road engines by the U.S. state of California in 2000. This engine is fitted with a scavenging passage that runs around the crankcase before the scavenging port. The aim of this research was to investigate how changes in the quantity of heat transferred to the fresh air as a result of varying the length of the scavenging passage would affect the state of combustion and exhaust gas composition. An ion probe was fitted to the end zone of the combustion chamber in order to detect the state of combustion. A voltage of 60 V was applied to the ion probe and measurements were made of the voltage drop that occurred due to the presence of high concentrations of ions (H3O+, C3H3+, CHO+, etc.) at the flame front.
Technical Paper

Effect of EGR-Induced Hot Residual Gas on Combustion when Operating a Two-Stroke Engine on Alcohol Fuels

2000-10-16
2000-01-2972
In this research, the effect of high-temperature residual gas, resulting from the application of a certain level of EGR, on combustion was investigated using a two-stroke engine and alcohol fuels (ethanol and methanol) and gasoline as the test fuels. Measurements were made of the light emission intensity of the OH radical on the intake and exhaust port sides of the combustion chamber and of the combustion chamber wall temperature (spark plug washer temperature) and the exhaust gas temperature. Data were measured and analyzed in a progression from normal combustion to autoignited combustion to preignition and to knocking operation.
Technical Paper

An Experimental Study Concerning the influence of Hot Residual Gas On Combustion

2000-01-15
2000-01-1419
This research focused on the light emission behavior of the OH radical (characteristic spectrum of 306.4 [nm]) that plays a key role in combustion reactions, in order to investigate the influence of the residual gas on autoignition. Authors also analyzed on the heat release and thermodynamic mean temperature due to research activity state of unburned gas. The test engine used was a 2-stroke, air-cooled engine fitted with an exhaust pressure control valve in the exhaust manifold. Raising the exhaust pressure forcibly recirculated more exhaust gas internally. When a certain level of internal EGR is forcibly applied, the temperature of the unburned end gas is raised on account of heat transfer from the hot residual gas and also due to compression by piston motion. As a result, the unburned end gas becomes active and autoignition tends to occur.
Technical Paper

Clarification of OH Radical Emission Intensity During Autoignition in a 2-Stroke Spark Ignition Engine

1998-10-19
982481
This research focused on the light emission behavior of the OH radical (characteristic spectrum of 306.4 nm) that plays a key role in combustion reactions, in order to investigate the influence of the residual gas on autoignition. The test engine used was a 2-stroke, air-cooled engine fitted with an exhaust pressure control valve in the exhaust manifold. When a certain level of internal EGR is forcibly applied, the temperature of the unburned end gas is raised on account of heat transfer from the hot residual gas and also due to compression by piston motion. As a result, the unburned end gas becomes active and autoignition tends to occur.
Technical Paper

Spectroscopic Measurement of OH Radical Emission Behavior Using a 2-Cycle Engine

1997-10-27
978515
The aim of this research was to investigate the mechanism causing autoignition and the effect of exhaust gas recirculation (EGR) on combustion by detecting the behavior of the OH radical and other excited molecules present in the flame in a spark ignition engine. The test equipment used was a 2-cycle engine equipped with a Schnürle scavenging system. Using emission spectroscopy, the behavior of the OH radical was measured at four locations in the end zone of the combustion chamber. The OH radical plays an important role in the elemental reactions of hydrocarbon fuels. When a certain level of EGR was applied according to the engine operating conditions, the unburned gas became active owing to heat transfer from residual gas near the measurement positions on the exhaust port side and the influence of excited species in the residual gas, and autoignition tended to occur.
X