Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Machine Learning Approach for Constructing Wet Clutch Torque Transfer Function

2021-04-06
2021-01-0712
A wet clutch is an established component in a conventional powertrain. It also finds a new role in electrified systems. For example, a wet clutch is utilized to couple or decouple an internal combustion engine from an electrically-driven drivetrain on demand in hybrid electric vehicles. In some electrical vehicle designs, it provides a means for motor speed reduction. Wet clutch control for those new applications may differ significantly from conventional strategy. For example, actuator pressure may be heavily modulated, causing the clutch to exhibit pronounced hysteresis. The clutch may be required to operate at a very high slip speed for unforeseen behaviors. A linear transfer function is commonly utilized for clutch control in automating shifting applications, assuming that clutch torque is proportional to actuator pressure. However, the linear model becomes inadequate for enabling robust control when the clutch behavior becomes highly nonlinear with hysteresis.
Technical Paper

Data-Driven Confidence Model for ADAS Object Detection

2020-04-14
2020-01-0695
The majority of road accident is due to human error. Advanced Driver Assistance System (ADAS) has the potential to reduce human error and improve driving safety. Customers have shown a growing acceptance for ADAS technology. With the rising demand for safety and comfortable driving experience, the global market for ADAS is expected to grow to $67 billion by 2025. A reliable ADAS system requires an accurate and robust object-detection system. There is often a trade-off in tuning the system. On one hand, miss-detection can cause accidents; on the other hand, false-detection can result in ghost-braking and harm the driving experience. The ADAS system can access various information from different sources. However, a unified confidence model, which combines different indicators, has not been much studied in the literature. In this paper, we propose a data-driven method, which utilizes the features from radar, camera and the tracking system to produce a high-level confidence model.
Technical Paper

Weighted Distance Metrics for Data Association Problem in Multi-Sensor Fusion

2019-11-04
2019-01-5022
Traffic accidents are the world's leading threat to human safety. The majority of traffic accidents are due to human error. Advanced Driver Assist Systems (ADAS) can reduce human error, therefore has the potential to effectively improve the safety of road traffic. The perception module in an ADAS understands the surrounding environment of the subject vehicle and therefore is the prerequisite for planning and control. Due to the limitation of computational constrain of Electronic Control Units, ADAS system commonly uses object-leveled multi-sensor fusion, in which raw data is processed to detect objects at the sensory level. In multi-sensor fusion, the task of assigning new observations to the existing tracks, known as Data Association problem, requires distance metrics to present the similarity between tracks. In the literature, metrics, such as standardized Euclidean distance and Mahalanobis distance has been used.
X