Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Response Ratio Development for Lateral Pendulum Impact with Porcine Thorax and Abdomen Surrogate Equivalents

2020-03-31
2019-22-0007
There has been recent progress over the past 10 years in research comparing 6-year-old thoracic and abdominal response of pediatric volunteers, pediatric post mortem human subjects (PMHS), animal surrogates, and 6-year-old ATDs. Although progress has been made to guide scaling laws of adult to pediatric thorax and abdomen data for use in ATD design and development of finite element models, further effort is needed, particularly with respect to lateral impacts. The objective of the current study was to use the impact response data of age equivalent swine from Yaek et al. (2018) to assess the validity of scaling laws used to develop lateral impact response corridors from adult porcine surrogate equivalents (PSE) to the 3-year-old, 6-year-old, and 10-year-old for the thorax and abdominal body regions.
Technical Paper

Side Impact Assessment and Comparison of Appropriate Size and Age Equivalent Porcine Surrogates to Scaled Human Side Impact Response Biofidelity Corridors

2018-11-12
2018-22-0009
Analysis and validation of current scaling relationships and existing response corridors using animal surrogate test data is valuable, and may lead to the development of new or improved scaling relationships. For this reason, lateral pendulum impact testing of appropriate size cadaveric porcine surrogates of human 3-year-old, 6-year-old, 10-year-old, and 50th percentile male age equivalence, were performed at the thorax and abdomen body regions to compare swine test data to already established human lateral impact response corridors scaled from the 50th percentile human adult male to the pediatric level to establish viability of current scaling laws. Appropriate Porcine Surrogate Equivalents PSE for the human 3-year-old, 6-year-old, 10-year-old, and 50th percentile male, based on whole body mass, were established. A series of lateral impact thorax and abdomen pendulum testing was performed based on previously established scaled lateral impact assessment test protocols.
Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs - Part III: Development of Transfer Functions

2018-04-03
2018-01-1444
An understanding of stiffness characteristics of different body regions, such as thorax, abdomen and pelvis of ES-2re and SID-IIs dummies under controlled laboratory test conditions is essential for development of both compatible performance targets for countermeasures and occupant protection strategies to meet the recently updated FMVSS214, LINCAP and IIHS Dynamic Side Impact Test requirements. The primary purpose of this study is to determine the transfer functions between the ES-2re and SID-IIs dummies for different body regions under identical test conditions using flat rigid wall sled tests. The experimental set-up consists of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and femur/knee impacting a stationary dummy seated on a rigid low friction seat at a pre-determined velocity.
Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs - Part I: ES-2re

2018-04-03
2018-01-1449
The main purpose of this study was to determine the impact responses of the different body regions (shoulder, thorax, abdomen and pelvis/leg) of the ES-2re and SID-IIs dummies using rigid wall impacts under different initial test conditions. The experimental set-up consisted of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and knee impacting a stationary dummy seated on a rigid seat at a pre-determined velocity. The relative location and orientation of the load-wall plates was adjusted relative to the body regions of the ES-2re and SID-IIs dummies respectively.
Journal Article

Finite-Element-Based Transfer Equations: Post-Mortem Human Subjects versus Hybrid III Test Dummy in Frontal Sled Impact

2015-04-14
2015-01-1489
Transfer or response equations are important as they provide relationships between the responses of different surrogates under matched, or nearly identical loading conditions. In the present study, transfer equations for different body regions were developed via mathematical modeling. Specifically, validated finite element models of the age-dependent Ford human body models (FHBM) and the mid-sized male Hybrid III (HIII50) were used to generate a set of matched cases (i.e., 192 frontal sled impact cases involving different restraints, impact speeds, severities, and FHBM age). For each impact, two restraint systems were evaluated: a standard three-point belt with and without a single-stage inflator airbag. Regression analyses were subsequently performed on the resulting FHBM- and HIII50-based responses. This approach was used to develop transfer equations for seven body regions: the head, neck, chest, pelvis, femur, tibia, and foot.
Technical Paper

Biomechanical Considerations for Assessing Interactions of Children and Small Occupants with Inflatable Seat Belts

2013-11-11
2013-22-0004
NHTSA estimates that more than half of the lives saved (168,524) in car crashes between 1960 and 2002 were due to the use of seat belts. Nevertheless, while seat belts are vital to occupant crash protection, safety researchers continue efforts to further enhance the capability of seat belts in reducing injury and fatality risk in automotive crashes. Examples of seat belt design concepts that have been investigated by researchers include inflatable, 4-point, and reverse geometry seat belts. In 2011, Ford Motor Company introduced the first rear seat inflatable seat belts into production vehicles. A series of tests with child and small female-sized Anthropomorphic Test Devices (ATD) and small, elderly female Post Mortem Human Subjects (PMHS) was performed to evaluate interactions of prototype inflatable seat belts with the chest, upper torso, head and neck of children and small occupants, from infants to young adolescents.
Technical Paper

Biomechanical Assessment of a Rear-Seat Inflatable Seatbelt in Frontal Impacts

2011-11-07
2011-22-0008
This study evaluated the biomechanical performance of a rear-seat inflatable seatbelt system and compared it to that of a 3-point seatbelt system, which has a long history of good real-world performance. Frontal-impact sled tests were conducted with Hybrid III anthropomorphic test devices (ATDs) and with post mortem human subjects (PMHS) using both restraint systems and a generic rear-seat configuration. Results from these tests demonstrated: a) reduction in forward head excursion with the inflatable seatbelt system when compared to that of a 3-point seatbelt and; b) a reduction in ATD and PMHS peak chest deflections and the number of PMHS rib fractures with the inflatable seatbelt system and c) a reduction in PMHS cervical-spine injuries, due to the interaction of the chin with the inflated shoulder belt. These results suggest that an inflatable seatbelt system will offer additional benefits to some occupants in the rear seats.
Technical Paper

Assessment of a Three-Point Restraint System with a Pre-tensioned Lap Belt and an Inflatable, Force-Limited Shoulder Belt

2011-11-07
2011-22-0007
This study investigates the performance of a 3-point restraint system incorporating an inflatable shoulder belt with a nominal 2.5-kN load limiter and a non-inflatable lap belt with a pretensioner (the “Airbelt”). Frontal impacts with PMHS in a rear seat environment are presented and the Airbelt system is contrasted with an earlier 3-point system with inflatable lap and shoulder belts but no load-limiter or pretensioners, which was evaluated with human volunteers in the 1970s but not fully reported in the open literature (the “Inflataband”). Key differences between the systems include downward pelvic motion and torso recline with the Inflataband, while the pelvis moved almost horizontally and the torso pitched forward with the Airbelt. One result of these kinematic differences was an overall more biomechanically favorable restraint loading but greater maximum forward head excursion with the Airbelt.
Technical Paper

Biomechanical Considerations for Abdominal Loading by Seat Belt Pretensioners

2010-11-03
2010-22-0016
While seat belts are the most effective safety technology in vehicles today, there are continual efforts in the industry to improve their ability to reduce the risk of injury. In this paper, seat belt pretensioners and current trends towards more powerful systems were reviewed and analyzed. These more powerful systems may be, among other things, systems that develop higher belt forces, systems that remove slack from belt webbing at higher retraction speeds, or both. The analysis started with validation of the Ford Human Body Finite Element Model for use in evaluation of abdominal belt loading by pretensioners. The model was then used to show that those studies, done with lap-only belts, can be used to establish injury metrics for tests done with lap-shoulder belts. Then, previously performed PMHS studies were used to develop AIS 2+ and AIS 3+ injury risk curves for abdominal interaction with seat belts via logistic regression and reliability analysis with interval censoring.
Technical Paper

Whole-Body Response to Pure Lateral Impact

2010-11-03
2010-22-0014
The objective of the current study was to provide a comprehensive characterization of human biomechanical response to whole-body, lateral impact. Three approximately 50th-percentile adult male PMHS were subjected to right-side pure lateral impacts at 4.3 ± 0.1 m/s using a rigid wall mounted to a rail-mounted sled. Each subject was positioned on a rigid seat and held stationary by a system of tethers until immediately prior to being impacted by the moving wall with 100 mm pelvic offset. Displacement data were obtained using an optoelectronic stereophotogrammetric system that was used to track the 3D motions of the impacting wall sled; seat sled, and reflective targets secured to the head, spine, extremities, ribcage, and shoulder complex of each subject. Kinematic data were also recorded using 3-axis accelerometer cubes secured to the head, pelvis, and spine at the levels of T1, T6, T11, and L3. Chest deformation in the transverse plane was recorded using a single chestband.
Technical Paper

Impact Response of Restrained PMHS in Frontal Sled Tests: Skeletal Deformation Patterns Under Seat Belt Loading

2009-11-02
2009-22-0001
This study evaluated the response of restrained post-mortem human subjects (PMHS) in 40 km/h frontal sled tests. Eight male PMHS were restrained on a rigid planar seat by a custom 3-point shoulder and lap belt. A video motion tracking system measured three-dimensional trajectories of multiple skeletal sites on the torso allowing quantification of ribcage deformation. Anterior and superior displacement of the lower ribcage may have contributed to sternal fractures occurring early in the event, at displacement levels below those typically considered injurious, suggesting that fracture risk is not fully described by traditional definitions of chest deformation. The methodology presented here produced novel kinematic data that will be useful in developing biofidelic human models.
Technical Paper

Rear Seat Occupant Safety: An Investigation of a Progressive Force-Limiting, Pretensioning 3-Point Belt System Using Adult PMHS in Frontal Sled Tests

2009-11-02
2009-22-0002
Rear seat adult occupant protection is receiving increased attention from the automotive safety community. Recent anthropomorphic test device (ATD) studies have suggested that it may be possible to improve kinematics and reduce injuries to rear seat occupants in frontal collisions by incorporating shoulder-belt force-limiting and pretensioning (FL+PT) technologies into rear seat 3-point belt restraints. This study seeks to further investigate the feasibility and potential kinematic benefits of a FL+PT rear seat, 3-point belt restraint system in a series of 48 kmh frontal impact sled tests (20 g, 80 ms sled acceleration pulse) performed with post mortem human surrogates (PMHS). Three PMHS were tested with a 3-point belt restraint with a progressive (two-stage) force limiting and pretensioning retractor in a sled buck representing the rear seat occupant environment of a 2004 mid-sized sedan.
Technical Paper

Thoracic Response to Shoulder Belt Loading: Investigation of Chest Stiffness and Longitudinal Strain Pattern of Ribs

2009-04-20
2009-01-0384
Two post-mortem human subjects were subjected to dynamic, non-injurious (up to 20% chest deflection) anterior shoulder belt loading at 0.5 m/s and 0.9 m/s loading rates. The human surrogates were mounted to a stationary apparatus that supported the spine and shoulder in a configuration comparable to that achieved in a 48 km/h sled test at the time of maximum chest deformation. A hydraulically driven shoulder belt was used to load the anterior thorax which was instrumented with a load cell for measuring reaction force and uniaxial strain gages at the 4th and 8th ribs. In addition, the deformation of the chest was measured using a 16- camera Vicon 3D motion capture system. In order to investigate the chest deformation pattern and ribcage loading in greater detail, a human finite element (FE) model of the thorax was used to simulate the tests.
Technical Paper

Biomechanical Response of the Pediatric Abdomen, Part 2: Injuries and Their Correlation with Engineering Parameters

2008-11-03
2008-22-0006
This paper describes the injuries generated during dynamic belt loading to a porcine model of the 6-year-old human abdomen, and correlates injury outcomes with measurable parameters. The test fixture produced transverse, dynamic belt loading on the abdomen of 47 immediately post-mortem juvenile swine at two locations (upper/lower), with penetration magnitudes ranging from 23% – 65% of the undeformed abdominal depth, with and without muscle tensing, and over a belt penetration rate range of 2.9 m/s – 7.8 m/s. All thoracoabdominal injuries were documented in detail and then coded according to the Abbreviated Injury Scale (AIS). Observed injuries ranged from AIS 1 to AIS 4. The injury distribution matched well the pattern of injuries observed in a large sample of children exposed to seatbelt loading in the field, with most of the injuries in the lower abdomen.
Technical Paper

Impact Response and Biomechanical Analysis of the Knee-Thigh-Hip Complex in Frontal Impacts with a Full Human Body Finite Element Model

2008-11-03
2008-22-0019
Changes in vehicle safety design technology and the increasing use of seat-belts and airbag restraint systems have gradually changed the relative proportion of lower extremity injuries. These changes in real world injuries have renewed interest and the need of further investigation into occupant injury mechanisms and biomechanical impact responses of the knee-thigh-hip complex during frontal impacts. This study uses a detailed finite element model of the human body to simulate occupant knee impacts experienced in frontal crashes. The human body model includes detailed anatomical features of the head, neck, shoulder, chest, thoracic and lumbar spine, abdomen, pelvis, and lower and upper extremities. The material properties used in the model for each anatomic part of the human body were obtained from test data reported in the literature. The human body model used in the current study has been previously validated in frontal and side impacts.
Technical Paper

Biomechanical Analysis of Knee Impact in Frontal Collisions through Finite Element Simulations with a Full Human Body Model

2008-06-17
2008-01-1887
This study applies a detailed finite element model of the human body to simulate occupant knee impacts experienced in vehicular frontal crashes. The human body model includes detailed anatomical features of the head, neck, chest, thoracic and lumbar spine, abdomen, and lower and upper extremities. The material properties used in the model for each anatomic part of the human body were obtained from test data reported in the literature. The total human body model used in the current study has been previously validated in frontal and side impacts. Several cadaver knee impact tests representing occupants in a frontal impact condition were simulated using the previously validated human body model. Model impact responses in terms of force-time and acceleration-time histories were compared with test results. In addition, stress distributions of the patella, femur, and pelvis were reported for the simulated test conditions.
Technical Paper

Comparison of PMHS, WorldSID, and THOR-NT Responses in Simulated Far Side Impact

2007-10-29
2012-01-1537
Injury to the far side occupant has been demonstrated as a significant portion of the total trauma in side impacts. The objective of the study was to determine the response of PMHS in far side impact configurations, with and without generic countermeasures, and compare responses to the WorldSID and THOR dummies. A far side impact buck was designed for a sled test system that included a center console and three-point belt system. The buck allowed for additional options of generic countermeasures including shoulder or thorax plates or an inboard shoulder belt. The entire buck could be mounted on the sled in either a 90-degree (3-o'clock PDOF) or a 60-degree (2-o'clock PDOF) orientation. A total of 18 tests on six PMHS were done to characterize the far side impact environment at both low (11 km/h) and high (30 km/h) velocities. WorldSID and THOR-NT tests were completed in the same configurations to conduct matched-pair comparisons.
Technical Paper

Comparison of PMHS, WorldSID, and THOR-NT Responses in Simulated Far Side Impact

2007-10-29
2007-22-0014
Injury to the far side occupant has been demonstrated as a significant portion of the total trauma in side impacts. The objective of the study was to determine the response of PMHS in far side impact configurations, with and without generic countermeasures, and compare responses to the WorldSID and THOR dummies. A far side impact buck was designed for a sled test system that included a center console and three-point belt system. The buck allowed for additional options of generic countermeasures including shoulder or thorax plates or an inboard shoulder belt. The entire buck could be mounted on the sled in either a 90-degree (3-o'clock PDOF) or a 60-degree (2-o'clock PDOF) orientation. A total of 18 tests on six PMHS were done to characterize the far side impact environment at both low (11 km/h) and high (30 km/h) velocities. WorldSID and THOR-NT tests were completed in the same configurations to conduct matched-pair comparisons.
Technical Paper

Thoracic Response of Belted PMHS, the Hybrid III, and the THOR-NT Mid-Sized Male Surrogates in Low-Speed, Frontal Crashes

2006-11-06
2006-22-0009
Injury to the thorax is the predominant cause of fatalities in crash-involved automobile occupants over the age of 65, and many elderly-occupant automobile fatalities occur in crashes below compliance or consumer information test speeds. As the average age of the automotive population increases, thoracic injury prevention in lower severity crashes will play an increasingly important role in automobile safety. This study presents the results of a series of sled tests to investigate the thoracic deformation, kinematic, and injury responses of belted post-mortem human surrogates (PMHS, average age 44 years) and frontal anthropomorphic test devices (ATDs) in low-speed frontal crashes. Nine 29 km/h (three PMHS, three Hybrid III 50th% male ATD, three THOR-NT ATD) and three 38 km/h (one PMHS, two Hybrid III) frontal sled tests were performed to simulate an occupant seated in the right front passenger seat of a mid-sized sedan restrained with a standard (not force-limited) 3-point seatbelt.
Technical Paper

Biomechanics of 4-Point Seat Belt Systems in Farside Impacts

2006-11-06
2006-22-0012
The biomechanical behavior of a harness style 4-point seat belt system in farside impacts was investigated through dummy and post mortem human subject tests. Specifically, this study was conducted to evaluate the effect of the inboard shoulder belt portion of a 4-point seat belt on the risk of vertebral and soft-tissue neck injuries during simulated farside impacts. Two series of sled tests simulating farside impacts were completed with crash dummies of different sizes, masses and designs to determine the forces and moments on the neck associated with loading of the shoulder belt. The tests were also performed to help determine the appropriate dummy to use in further testing. The BioSID and SID-IIs reasonably simulated the expected kinematics response and appeared to be reasonable dummies to use for further testing. Analysis also showed that dummy injury measures were lower than injury assessment reference values used in development of side impact airbags.
X