Refine Your Search

Topic

Search Results

Journal Article

Potential Analysis of Defossilized Operation of a Heavy-Duty Dual-Fuel Engine Utilizing Dimethyl Carbonate/Methyl Formate as Primary and Poly Oxymethylene Dimethyl Ether as Pilot Fuel

2024-04-18
Abstract This study demonstrates the defossilized operation of a heavy-duty port-fuel-injected dual-fuel engine and highlights its potential benefits with minimal retrofitting effort. The investigation focuses on the optical characterization of the in-cylinder processes, ranging from mixture formation, ignition, and combustion, on a fully optically accessible single-cylinder research engine. The article revisits selected operating conditions in a thermodynamic configuration combined with Fourier transform infrared spectroscopy. One approach is to quickly diminish fossil fuel use by retrofitting present engines with decarbonized or defossilized alternatives. As both fuels are oxygenated, a considerable change in the overall ignition limits, air–fuel equivalence ratio, burning rate, and resistance against undesired pre-ignition or knocking is expected, with dire need of characterization.
Journal Article

Comparison of Tabulated and Complex Chemistry Approaches for Ammonia–Diesel Dual-Fuel Combustion Simulation

2024-04-18
Abstract Using ammonia as a carbon-free fuel is a promising way to reduce greenhouse gas emissions in the maritime sector. Due to the challenging fuel properties, like high autoignition temperature, high latent heat of vaporization, and low laminar flame speeds, a dual-fuel combustion process is the most promising way to use ammonia as a fuel in medium-speed engines. Currently, many experimental investigations regarding premixed and diffusive combustion are carried out. A numerical approach has been employed to simulate the complex dual-fuel combustion process to better understand the influences on the diffusive combustion of ammonia ignited by a diesel pilot. The simulation results are validated based on optical investigations conducted in a rapid compression–expansion machine (RCEM). The present work compares a tabulated chemistry simulation approach to complex chemistry-based simulations.
Journal Article

Bayesian Network Model and Causal Analysis of Ship Collisions in Zhejiang Coastal Waters

2024-04-10
Abstract For taking counter measures in advance to prevent accidental risks, it is of significance to explore the causes and evolutionary mechanism of ship collisions. This article collects 70 ship collision accidents in Zhejiang coastal waters, where 60 cases are used for modeling while 10 cases are used for verification (testing). By analyzing influencing factors (IFs) and causal chains of accidents, a Bayesian network (BN) model with 19 causal nodes and 1 consequential node is constructed. Parameters of the BN model, namely the conditional probability tables (CPTs), are determined by mathematical statistics methods and Bayesian formulas. Regarding each testing case, the BN model’s prediction on probability of occurrence is above 80% (approaching 100% indicates the certainty of occurrence), which verifies the availability of the model. Causal analysis based on the backward reasoning process shows that H (Human error) is the main IF resulting in ship collisions.
Journal Article

Demonstration of 2027 Emissions Standards Compliance Using Heavy-Duty Gasoline Compression Ignition with P1 Hybridization

2024-02-19
Abstract Heavy-duty on-road engines are expected to conform to an ultralow NOx (ULNOx) standard of 0.027 g/kWh over the composite US heavy-duty transient federal test procedure (HD-FTP) cycle by 2031, a 90% reduction compared to 2010 emissions standards. Additionally, these engines are expected to conform to Phase 2 greenhouse gas regulations, which require tailpipe CO2 emissions under 579 g/kWh. This study experimentally demonstrates the ability of high fuel stratification gasoline compression ignition (HFS-GCI) to satisfy these emissions standards. Steady-state and transient tests are conducted on a prototype multi-cylinder heavy-duty GCI engine based on a 2010-compliant Cummins ISX15 diesel engine with a urea-SCR aftertreatment system (ATS). Steady-state calibration exercises are undertaken to develop highly fuel-efficient GCI calibration maps at both cold-start and warmed up conditions.
Journal Article

TOC

2023-12-18
Abstract TOC
Journal Article

A Review of Cavitation Phenomenon and Its Influence on the Spray Atomization in Diesel Injector Nozzles

2023-12-15
Abstract In view of the combustion efficiency and emission performance, various new clean combustion modes put forward higher requirements for the performance of the fuel injection system, and the cavitating two-phase flow characteristics in the injector nozzle have a significant impact on the spray atomization and combustion performance. This article comprehensively discusses and summarizes the factors that affect cavitation and the effectiveness of cavitation, and presents the research status and existent problems under each factor. Among them, viscosity factors are a hot research topic that researchers are passionate about, and physical properties factors still have the value of further in-depth research. However, the importance of material surface factors ranks last since the nozzle material was determined. Establishing a more comprehensive cavitation–atomization model considering various factors is the focus of research on cavitation phenomena.
Journal Article

Lateral Control for Driverless Mining Trucks with the Consideration of Steering Lag and Vehicle–Road States

2023-12-14
Abstract Lateral control is an essential part of driverless mining truck systems. However, the considerable steering lag and poor tracking accuracy limit the development of unmanned mining. In this article, a dynamic preview distance was designed to resist the steering lag. Then the vehicle–road states, which described the real-time lateral and heading errors between the vehicle and the target road, was defined to describe the control strategy more efficiently. In order to trade off the tracking accuracy and stability, the Takagi–Sugeno (TS) fuzzy method was used to adjust the weight matrix of the linear quadratic regulator (LQR) for different vehicle–road states. Based on the actual mine production environment and the TR100 mining truck, experimental results show that the TS-LQR algorithm performed much better than the pure pursuit algorithm.
Journal Article

Multibody Dynamics Modeling of a Continuous Rubber Track System: Part 1—Model Description

2023-12-06
Abstract Continuous rubber track systems for farming applications are typically designed using multiple iterations on full-scale physical prototypes which is costly and time consuming. The development of numerical design tools could speed up the design process and reduce development costs while improving product performance. In this article, a rigid multibody dynamics (MBD) model of a continuous rubber track system is presented. This article is the first part of a two-part study: Part 1 focuses on the model description and part 2 describes the experimental evaluation of the MBD model. The modeling methodology is based on a track discretization as a set of rigid body elements interconnected by 6 degrees-of-freedom bushing joints. The mathematical formalism and experimental characterization of all critical subsystems such as the roller wheels, tensioner, suspensions, and contact models are also presented.
Journal Article

Optimization of Takeaway Delivery Based on Large Neighborhood Search Algorithm

2023-11-09
Abstract The drone logistics distribution method, with its small size, quick delivery, and zero-touch, has progressively entered the mainstream of development due to the global epidemic and the rapidly developing global emerging logistics business. In our investigation, a drone and a delivery man worked together to complete the delivery order to a customer’s home as quickly as possible. We realize the combined delivery network between drones and delivery men and focus on the connection and scheduling between drones and delivery men using existing facilities such as ground airports, unmanned stations, delivery men, and drones. Based on the dynamic-vehicle routing problem model, the establishment of a delivery man and drone with a hybrid model, in order to solve the tarmac unmanned aerial vehicle for take-out delivery scheduling difficulties, linking to the delivery man and an adaptive large neighborhood search algorithm solves the model.
Journal Article

Experimental Study on Ship Squat in Intermediate Channel

2023-11-09
Abstract The sinking and trimming of the hull in the channel would directly affect the handling and navigation safety of the ship. In view of the ship sinking, a series of empirical formulas to estimate the subsidence have been put forward for vessel in spacious shallow water areas. However, most of the equations are based on seagoing vessels. They are not suitable for inland ships with small scales, shallow drafts, and narrow navigation width. Till now, research on ship squat in intermediate channel has not yielded more practical results. Here, a generalized physical model is used to study the sinking of 500t class ships in restricted intermediate channel under different channel widths, water depths, and speeds. The main factors affecting the squat are analyzed, the empirical relation is compared with the measured squat. The Barrass equation is modified, and the calculation relation of the settlement suitable for inland river ships is proposed.
Journal Article

Assessment of Computational Fluid Dynamics Reynolds-Averaged Navier–Stokes Models for Bluff Bodies Aerodynamics

2023-09-19
Abstract Since the steady-state computational fluid dynamics (CFD) Reynolds-averaged Navier–Stokes (RANS) turbulence models offer low-cost and sensible accuracy, they are frequently utilized for bluff bodies’ external aerodynamics investigations (e.g., upwind, crosswind, and shape optimization). However, no firm certainty is made regarding the best model in terms of accuracy and cost. Based on cost and accuracy aspects, four RANS turbulence models were studied, which are Spalart–Allmaras, realizable k-ε, RNG k-ε, and SST k-ω. Ahmed body with a 25° slant angle benchmark case was introduced for this investigation. Two grids were generated to satisfy the near-wall treatment of each turbulence model. All grid settings were proposed and discussed in detail. Fluid-structure analysis was performed on five different planes.
Journal Article

A Numerical Methodology to Test the Lubricant Oil Evaporation and Its Thermal Management-Related Properties Derating in Hydrogen-Fueled Engines

2023-09-15
Abstract Due to the incoming phase out of fossil fuels from the market in order to reduce the carbon footprint of the automotive sector, hydrogen-fueled engines are candidate mid-term solution. Thanks to its properties, hydrogen promotes flames that poorly suffer from the quenching effects toward the engine walls. Thus, emphasis must be posed on the heat-up of the oil layer that wets the cylinder liner in hydrogen-fueled engines. It is known that motor oils are complex mixtures of a number of mainly heavy hydrocarbons (HCs); however, their composition is not known a priori. Simulation tools that can support the early development steps of those engines must be provided with oil composition and properties at operation-like conditions. The authors propose a statistical inference-based optimization approach for identifying oil surrogate multicomponent mixtures. The algorithm is implemented in Python and relies on the Bayesian optimization technique.
Journal Article

Soft Computing-Based Driver Modeling for Automatic Parking of Articulated Heavy Vehicles

2023-09-09
Abstract Parking an articulated vehicle is a challenging task that requires skill, experience, and visibility from the driver. An automatic parking system for articulated vehicles can make this task easier and more efficient. This article proposes a novel method that finds an optimal path and controls the vehicle with an innovative method while considering its kinematics and environmental constraints and attempts to mathematically explain the behavior of a driver who can perform a complex scenario, called the articulated vehicle park maneuver, without falling into the jackknifing phenomena. In other words, the proposed method models how drivers park articulated vehicles in difficult situations, using different sub-scenarios and mathematical models.
Journal Article

Driveline System Effects on Powertrain Mounting Optimization for Vibration Isolation under Actual Vehicle Conditions

2023-08-04
Abstract Vehicle vibration is the key consideration in the early stage of vehicle development. The most dynamic system in a vehicle is the powertrain system, which is a source of various frequency vibration inputs to the vehicle. Mostly for powertrain mounting system design, only the uncoupled powertrain system is considered. However, in real situations, other subsystems are also attached to the powertrain unit. Thereby, assuming only the powertrain unit ignores the dynamic interactions among the powertrain and other systems. To address this shortcoming, a coupled powertrain and driveline mounting system problem is formulated and examined. This 16 DOF problem is constructed around a case of a front engine-based powertrain unit attached to the driveline system, which as an assembly resting on other systems such as chassis, suspensions, axles, and tires.
Journal Article

A Review of Intelligence-Based Vehicles Path Planning

2023-07-28
Abstract Numerous researchers are committed to finding solutions to the path planning problem of intelligence-based vehicles. How to select the appropriate algorithm for path planning has always been the topic of scholars. To analyze the advantages of existing path planning algorithms, the intelligence-based vehicle path planning algorithms are classified into conventional path planning methods, intelligent path planning methods, and reinforcement learning (RL) path planning methods. The currently popular RL path planning techniques are classified into two categories: model based and model free, which are more suitable for complex unknown environments. Model-based learning contains a policy iterative method and value iterative method. Model-free learning contains a time-difference algorithm, Q-learning algorithm, state-action-reward-state-action (SARSA) algorithm, and Monte Carlo (MC) algorithm.
Journal Article

Design Optimization Methods for Forced Lubrication System Used in Automotive Transmissions

2023-07-18
Abstract Lubrication has been a major area of interest in engineering. Especially in vehicle transmissions, lubrication plays a very crucial role because gears and bearings are constantly subjected to heavy loads. Proper lubrication is essential for maintaining system performance and ensuring endurance life. Insufficient lubrication can lead to excessive wear, increased friction, and eventually, failures in the transmission components. However, excess lubrication can result in power losses due to the resistance offered by the excessive lubricant. Therefore, achieving effective lubrication using optimized lubrication system design is vital for ensuring the longevity and efficiency of the transmission system. Majorly, two types of lubrication methods are used in transmissions: splash lubrication and forced lubrication. This article focuses on forced lubrication, where the lubrication system actively delivers the required flow of lubricant to specific locations within the transmission.
Journal Article

Reliable Ship Emergency Power Source: A Monte Carlo Simulation Approach to Optimize Remaining Capacity Measurement Frequency for Lead-Acid Battery Maintenance

2023-07-14
Abstract The development of predictive maintenance has become one of the most important drivers of innovation, not only in the maritime industry. The proliferation of on-board and remote sensing and diagnostic systems is creating many new opportunities to reduce maintenance costs and increase operational stability. By predicting impending system faults and failures, proactive maintenance can be initiated to prevent loss of seaworthiness or operability. The motivation of this study is to optimize predictive maintenance in the maritime industry by determining the minimum useful remaining lead-acid battery capacity measurement frequency required to achieve cost-efficiency and desired prognostic performance in a remaining battery capacity indication system. The research seeks to balance operational stability and cost-effectiveness, providing valuable insight into the practical considerations and potential benefits of predictive maintenance.
Journal Article

Development of Load Reconstruction Technique and Application on Commercial Vehicle Suspension

2023-06-12
Abstract The ability to predict the durability of a structure depends on the knowledge of operating loads experienced by the structure. Typically, multi-body dynamics (MBD) models are used to cascade measured wheel loads to hard points. However, in this approach, there are many sources by which errors creep into cascaded forces. Any attempt to reduce sources of such errors is time consuming and costly. In typical program development timelines, it is very difficult to accommodate such model calibration efforts. Commercial load cells exist in the industry to give engineers insight into understanding the complex real-world loading of their structures. A significant limitation to the use of load cells is that the structure needs to be modified to accept the load cell, and not all desired loading degrees of freedom (DOFs) can be measured. One of the innovative solutions to calculate operating loads is to convert the structure itself into its own load transducer.
Journal Article

Evaluation of Fuel Economy Benefits of Radar-Based Driver Assistance in Randomized Traffic

2023-05-17
Abstract Certain advanced driver assistance systems (ADAS) have the potential to boost energy efficiency in real-world scenarios. This article details a radar-based driver assistance scheme designed to minimize fuel consumption for a commercial vehicle by predictively optimizing braking and driving torque inputs while accommodating the driver’s demand. The workings of the proposed scheme are then assessed with a novel integration of the driver assistance functionality in randomized traffic microsimulation. Although standardized test procedures are intended to mimic urban and highway speed profiles for the purposes of evaluating fuel economy and emissions, they do not explicitly consider the interactions present in real-world driving between the ego vehicle equipped with ADAS and other vehicles in traffic. This article presents one approach to address the drawback of standardized test procedures for evaluating the fuel economy benefits of ADAS technologies.
Journal Article

Research on the Evaluation System of Urban Rail Transit Operation Safety in the Context of Intelligent Transportation

2023-04-26
Abstract With the rapid development of the Internet and intelligent control technology, intelligent transportation has become a research hotspot in building a smart city. Under the background of intelligent transportation, it is particularly important to effectively evaluate the rail transit as the framework of urban public transport in this study, and fuzzy mechanism is introduced to optimize the support vector machine (SVM), and on this basis, analytic hierarchy process (AHP) and SVM are combined to improve the classification accuracy and improve the rail transit operation safety evaluation index system. The experimental results show that the classification accuracy of the fuzzy SVM combined with AHP is above 85% on all the datasets, and it can effectively eliminate the less-relevant indicators. In the actual evaluation of Shanghai Rail Transit safety, the prediction accuracy exceeded 80% and the highest reached 94.51%.
X