Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Thermal Management System for Battery Electric Heavy-Duty Trucks

2024-07-02
2024-01-2971
On the path to decarbonizing road transport, electric commercial vehicles will play a significant role. The first applications were directed to the smaller trucks for distribution traffic with relatively moderate driving and range requirements, but meanwhile, the first generation of a complete portfolio of truck sizes is developed and available on the market. In these early applications, many compromises were accepted to overcome component availability, but meanwhile, the supply chain can address the specific needs of electric trucks. With that, the optimization towards higher usability and lower costs can be moved to the next level. Especially for long-haul trucks, efficiency is a driving factor for the total costs of ownership. Besides the propulsion system, all other systems must be optimized for higher efficiency. This includes thermal management since the thermal management components consume energy and have a direct impact on the driving range.
Event

2024 NAIPC

2024-04-29
NAIPC reflects modern developments in alternative, electrified propulsion systems, high tech gasoline, diesel ICEs, hydrogen fuel cells, battery electric systems, variable transmissions.
Event

Sponsor - NAIPC

2024-04-29
Sponsor at the most influential event held exclusively by and for top level executives in the automotive industry whose focus is on business in the North American market.
Event

North American International Propulsion Conference

2024-04-29
North American International Propulsion Conference (NAIPC) reflects modern developments in alternative, electrified propulsion systems, high tech gasoline, diesel ICEs, hydrogen fuel cells, battery electric systems, variable transmissions.
Technical Paper

Simulation of Vehicle Speed Sensor Data for Use in Heavy Vehicle Event Data Recorder Testing

2024-04-09
2024-01-2889
Heavy Vehicle Event Data Recorders (HVEDRs) have the ability to capture important data surrounding an event such as a crash or near crash. Efforts by many researchers to analyze the capabilities and performance of these complex systems can be problematic, in part, due to the challenges of obtaining a heavy truck, the necessary space to safely test systems, the inherent unpredictability in testing, and the costs associated with this research. In this paper, a method for simulating vehicle speed sensor (VSS) inputs to HVEDRs to trigger events is introduced and validated. Full-scale instrumented testing is conducted to capture raw VSS signals during steady state and braking conditions. The recorded steady state VSS signals are injected into the HVEDR along with synthesized signals to evaluate the response of the HVEDR. Brake testing VSS signals are similarly captured and injected into the HVEDR to trigger an event record.
Technical Paper

Measurement and Modeling for Creep Groan of a Drum Brake in Trucks

2024-04-09
2024-01-2351
An experiment is carried out to measure creep groan of a drum brake located in a trailer axle of a truck. The noise nearby the drum brake and accelerations on brake shoes, axle and trailer frame are collected to analyze the occurring conditions and characteristics of the creep groan. A multi-body dynamics model with 1/4 trailer chassis structures is established for analyzing brake component vibrations that generates the creep groan. In the model, the contact force between brake cam and brake shoes, the contact friction characteristics between brake linings and inner circular surface of brake drum, and the properties of chassis structure are included. Dynamic responses of brake shoes, axle and trailer frame during the braking process are estimated using the established model and the responses are compared with the measured results, which validate the model.
Technical Paper

Combination of Dissimilar Overlay Materials for Engine Bearing Life Extension

2024-04-09
2024-01-2066
Nowadays, Bismuth (Bi) is being applied as an overlay material for engine bearings instead of Lead (Pb) which is an environmentally harmful material. Bi overlay has already been a solid performer in some automotive engine sectors due to its superior load carrying capacity and good robustness characteristic which are necessary to maintain its longevity during the lifetime of engines. The replacement is also seen on relatively larger size engines, such as Trucks and Off-highway heavy duty applications. Basically, these applications require higher power output than passenger cars, and the expected component lifecycle becomes longer. Though Bi has similar material characteristic to traditional Pb, it becomes challenging for the material alone to satisfy these requirements. Polymer overlay is known for its superior anti-wear performance and longer lifetime due to less adhesion against a steel counterpart than metallic materials (included Bi).
Technical Paper

Fuzzy Control of Regenerative Braking on Pure Electric Garbage Truck Based on Particle Swarm Optimization

2024-04-09
2024-01-2145
To improve the braking energy recovery rate of pure electric garbage removal vehicles and ensure the braking effect of garbage removal vehicles, a strategy using particle swarm algorithm to optimize the regenerative braking fuzzy control of garbage removal vehicles is proposed. A multi-section front and rear wheel braking force distribution curve is designed considering the braking effect and braking energy recovery. A hierarchical regenerative braking fuzzy control strategy is established based on the braking force and braking intensity required by the vehicle. The first layer is based on the braking force required by the vehicle, based on the front and rear axle braking force distribution plan, and uses fuzzy controllers.
Technical Paper

A methodology for modeling the thermal behavior of an electric axle in real driving cycles

2024-04-09
2024-01-2588
The thermal behavior of the electric axle is an essential indicator which requires certain attention during the development process. Due to the complexity of heat generation mechanism and heat transfer boundary conditions, it is difficult to accurately predict the axle’s temperature, especially in real driving conditions. In this paper, a comprehensive 1D model is developed to simulate its heat transfer process effectively and accurately. The heat transfer model is developed based on the thermal network method, and the electric axle is divided into thermal mass according to its heat transfer characteristics. The heat generation model, which accounts for meshing loss, bearing loss, churning loss, and windage loss, exchanges heat flux and oil temperature information with the heat transfer model to take into account the effect of lubricating oil temperature on power loss.
Technical Paper

Simulation of Crush Behavior and Energy Absorption of Vehicle Li-Ion Battery Module with Prismatic Cells

2024-04-09
2024-01-2492
Lithium-ion batteries serve as the main power source for contemporary electric vehicles. Safeguarding these batteries against damage is paramount, as it can trigger accelerated performance deterioration, potential fire hazards, environmental threats, and more. This study explores damage progression of a commercial vehicle lithium-ion battery module containing prismatic cells under indentation crush loading. We employed computational simulations of mechanical loading tests to investigate this behavior. Physical tests involved subjecting modules to low-speed (0.05 m/s) indentations using a V-shaped stainless-steel wedge, under six unique loading conditions. During the tests, force, and voltage change with wedge displacement were monitored. Utilizing experimental insights, we constructed a finite element model, which included key components of the battery module, such as the prismatic cells, steel frames, and various plastic parts.
X