Refine Your Search

Search Results

Viewing 1 to 3 of 3
Book

Homogeneous Charge Compression Ignition (HCCI) Engines

2003-03-03
The homogeneous charge, compression-ignition (HCCI) combustion process has the potential to significantly reduce NOx and particulate emissions, while achieving high thermal efficiency and the capability of operating with a wide variety of fuels. This makes the HCCI engine an attractive technology that can ostensibly provide diesel-like fuel efficiency and very low emissions, which may allow emissions compliance to occur without relying on lean aftertreatment systems.
Technical Paper

Diffusion-Flame / Wall Interactions in a Heavy-Duty DI Diesel Engine

2001-03-05
2001-01-1295
Over the past decade, laser diagnostics have improved our understanding of many aspects of diesel combustion. However, interactions between the combusting fuel jet and the piston-bowl wall are not well understood. In heavy-duty diesel engines, with typical fuels, these interactions occur with the combusting vapor-phase region of the jet, which consists of a central region containing soot and other products of rich-premixed combustion, surrounded by a diffusion flame. Since previous work has shown that the OH radical is a good marker of the diffusion flame, planar laser-induced fluorescence (PLIF) imaging of OH was applied to an investigation of the diffusion flame during wall interaction. In addition, simultaneous OH PLIF and planar laser-induced incandescence (PLII) soot imaging was applied to investigate the likelihood for soot deposition on the bowl wall.
Technical Paper

Chemical Kinetic Modeling of Combustion of Practical Hydrocarbon Fuels

1989-04-01
890990
The development of detailed chemical kinetic reaction mechanisms for analysis of autoignition and knocking of complex hydrocarbon fuels is described. The wide ranges of temperature and pressure which are encountered by end gases in automobile engine combustion chambers result in extreme demands on the reaction mechanisms intended to describe knocking conditions. The reactions and chemical species which are most important in each temperature and pressure regime are discussed, and the validation of these reaction mechanisms through comparison with idealized experimental results is described. The use of these mechanisms is illustrated through comparisons between computed results and experimental data obtained in actual knocking engines.
X