Refine Your Search

Topic

Search Results

Technical Paper

Numerical Simulation and Optimization for Combustion of an Opposed Piston Two-Stroke Engine for Unmanned Aerial Vehicle (UAV)

2020-04-14
2020-01-0782
An opposed piston two-stroke engine is more suitable for use in an unmanned aerial vehicle because of its small size, excellent self-balancing, stable operation, and low noise. Consequently, in this study, based on experimental data for a prototype opposed piston two-stroke engine, numerical simulation models were established using GT-POWER for 1D simulation and AVL-FIRE for 3D CFD simulation. The mesh grid and solver parameters for the numerical model of the CFD simulation were determined to guarantee the accuracy of the numerical simulation, before studying and optimizing the ventilation efficiency of the engine with different dip angles. Furthermore, the fuel spray and combustion were analyzed and optimized in details.
Technical Paper

Effect of Injection Strategy on the Combustion and Knock in a Downsized Gasoline Engine with Large Eddy Simulation

2020-04-14
2020-01-0244
Strategies to suppress knock have been extensively investigated to pursue thermal efficiency limits in downsized engines with a direct-injection spark ignition. Comprehensive considerations were given in this work, including the effects of second injection timing and injector location on knock combustion in a downsized gasoline engine by large eddy simulation. The turbulent flame propagation is determined by an improved G-equation turbulent combustion model, and the detailed chemistry mechanism of a primary reference fuel is employed to observe the detailed reaction process in the end-gas auto-ignition process. The conclusions were obtained by comparing the data to the baseline single-injection case with moderate knock intensity. Results reveal that for both arrangements of injectors, turbulence intensity is improved as the injecting timing is retarded, increasing the flame propagation speed.
Technical Paper

Effects on Cycle-to-Cycle Variations and Knocking Combustion of Turbulent Jet Ignition (TJI) with a Small Volume Pre-Chamber

2020-04-14
2020-01-1119
Turbulent jet ignition (TJI) has the advantages of improving burning rates and expanding lean burn limitations of gasoline engines. Based on a single cylinder engine, combustion process with different ignition methods, including single spark ignition, twin spark ignition, one-hole TJI and seven-hole TJI, are studied in this work. Experiments are carried out under conditions with different air/fuel equivalence ratios and different engine loads. Results show that the cycle-to-cycle variations of TJI combustion, which is evaluated by coefficient of variations (CoV) of IMEP and CoV of peak pressure, are obviously reduced due to the fast burning rate induced by the jet flame, and one-hole TJI combustion has the best combustion stability, especially for reducing the CoV of peak pressure.
Technical Paper

Numerical Simulations of Methanol Engine Performance for High-altitude, Non-road Applications

2019-12-19
2019-01-2233
Ambient pressure and temperature are two main factors affecting the engine performance. As altitude increases, the air volume and air temperature entering the cylinder per cycle decrease due to the lowering of atmospheric pressure and temperature, which directly affects the engine performance. As a result, engine performance in the plateau environment degrades while the power, economy, and emission performance of the engine significantly deteriorate. This paper focuses on the simulation and parameter optimization of the combustion process of non-road methanol engines, and 1D simulation is for BSFC (Brake Specific Fuel Consumption) prediction while 3D simulation is for soot and NOx (Nitrogen Oxides) predictions. Discusses, analyzes and predicts the feasibility of non-road methanol engines for high altitude conditions. Especially the application of high proportion of methanol in non-road methanol engines at high altitudes.
Technical Paper

Research on Opposed Piston Two-Stroke Engine for Unmanned Aerial Vehicle by Thermodynamic Simulation

2017-10-08
2017-01-2408
The Opposed Piston Two-Stroke (OPTS) engine has many advantages on power density, fuel tolerance, fuel flexibility and package space. A type of self-balanced opposed-piston folded-crank train two-stroke engine for Unmanned Aerial Vehicle (UAV) was studied in this paper. AVL BOOST was used for the thermodynamic simulation. It was a quasi-steady, filling-and-emptying flow analysis -- no intake or exhaust dynamics were simulated. The results were validated against experimental data. The effects of high altitude environment on engine performance have been investigated. Moreover, the matching between the engine and turbocharger was designed and optimized for different altitude levels. The results indicated that, while the altitude is above 6000m, a multi-stage turbocharged engine system need to be considered and optimized for the UAV.
Technical Paper

Experimental Study on the Potential of Higher Octane Number Fuels for Low Load Partially Premixed Combustion

2017-03-28
2017-01-0750
The optimal fuel for partially premixed combustion (PPC) is considered to be a gasoline boiling range fuel with an octane number around 70. Higher octane number fuels are considered problematic with low load and idle conditions. In previous studies mostly the intake air temperature did not exceed 30 °C. Possibly increasing intake air temperatures could extend the load range. In this study primary reference fuels (PRFs), blends of iso-octane and n-heptane, with octane numbers of 70, 80, and 90 are tested in an adapted commercial diesel engine under partially premixed combustion mode to investigate the potential of these higher octane number fuels in low load and idle conditions. During testing combustion phasing and intake air temperature are varied to investigate the combustion and emission characteristics under low load and idle conditions.
Journal Article

Large Eddy Simulation of an n-Heptane Spray Flame with Dynamic Adaptive Chemistry under Different Oxygen Concentrations

2015-04-14
2015-01-0400
Detailed chemical kinetics is essential for accurate prediction of combustion performance as well as emissions in practical combustion engines. However, implementation of that is challenging. In this work, dynamic adaptive chemistry (DAC) is integrated into large eddy simulations (LES) of an n-heptane spray flame in a constant volume chamber (CVC) with realistic application conditions. DAC accelerates the time integration of the governing ordinary differential equations (ODEs) for chemical kinetics through the use of locally (spatially and temporally) valid skeletal mechanisms. Instantaneous flame structures and global combustion characteristics such as ignition delay time, flame lift-off length (LOL) and emissions are investigated to assess the effect of DAC on LES-DAC results. The study reveals that in LES-DAC simulations, the auto-ignition time and LOL obtain a well agreement with experiment data under different oxygen concentrations.
Journal Article

Lignin Derivatives as Potential Octane Boosters

2015-04-14
2015-01-0963
Owing to environmental and health concerns, tetraethyl lead was gradually phased out from the early 1970's to mid-1990's in most developed countries. Advances in refining, leading to more aromatics (via reformate) and iso-paraffins such as iso-octane, along with the introduction of (bio) oxygenates such as MTBE, ETBE and ethanol, facilitated the removal of lead without sacrificing RON and MON. In recent years, however, legislation has been moving in the direction of curbing aromatic and olefin content in gasoline, owing to similar concerns as was the case for lead. Meanwhile, concerns over global warming and energy security have motivated research into renewable fuels. Amongst which are those derived from biomass. The feedstock of interest in this study is lignin, which, together with hemicellulose and cellulose, is amongst the most abundant organic compounds on the planet.
Technical Paper

Performance and Emissions of Lignin and Cellulose Based Oxygenated Fuels in a Compression-Ignition Engine

2015-04-14
2015-01-0910
Lignocellulosic biomass consists of (hemi-) cellulose and lignin. Accordingly, an integrated biorefinery will seek to valorize both streams into higher value fuels and chemicals. To this end, this study evaluated the overall combustion performance of both cellulose- and lignin derivatives, namely the high cetane number (CN) di-n-butyl ether (DnBE) and low CN anisole, respectively. Said compounds were blended both separately and together with EN590 diesel. Experiments were conducted in a single cylinder compression ignition engine, which has been optimized for improved combustion characteristics with respect to low emission levels and at the same time high fuel efficiency. The selected operating conditions have been adopted from previous “Tailor-Made Fuels from Biomass (TMFB)” work.
Technical Paper

Numerical methods of improving computation efficiency on diesel spray and combustion using large eddy simulation in KIVA3V code

2014-04-01
2014-01-1149
Unlike RANS method, LES method needs more time and much more grids to accurately simulate the spray process. In KIVA, spray process was modeled by Lagrangain-drop and Eulerian-fluid method. The coarse grid can cause errors in predicting the droplet-gas relative velocity, so for reducing grid dependency due to the relative velocity effects, an improved spray model based on a gas-jet theory is used in this work and in order to validate the model seven different size grids were used. In this work, the local dense grid was used to reduce the computation cost and obtain accurate results that also were compared with entire dense grid. Another method to improve computation efficiency is the MUSCL (Monotone Upstream-centered Schemes for Conservation Laws) differencing scheme that was implemented into KIVA3V-LES code to calculate the momentum convective term and reduce numerical errors.
Technical Paper

Numerical Study of Pressure Swirl Spray Using an Improved KIVALES with Dense Grid for GDI Engine

2013-10-14
2013-01-2558
Gasoline direct injection engines can greatly improve the fuel economy, but the idea mixture distribution cannot be easily controlled. In this paper, the linearized instability sheet atomization (LISA) and large eddy simulation (LES) implemented into KIVA-3V code were used to study the gasoline hollow cone spray process for gasoline direct injection (GDI) in a constant volume vessel. The three-dimensional results show that the LISA model can effectively simulate the gasoline hollow cone spray and obtain the string structure compared to the experiment data. And the velocity interpolation method can reduce the grid dependency of spray simulation. Using dense grid (about 8 million cells) in LES and RANS all can obtain the good spray tip penetration and width. Unlike diesel spray, for gasoline spray there are not big difference between the results using LES and RANS. In additional the ambient pressure significantly influence the gasoline spray shape.
Technical Paper

Large Eddy Simulation of Liquid Fuel Spray and Combustion with Gradually Varying Grid

2013-10-14
2013-01-2634
In this work, large eddy simulation (LES) with a K-equation subgrid turbulent kinetic energy model is implemented into the CFD code KIVA3V to study the features of liquid fuel spray and combustion using gradually varying grid in a constant volume chamber. The characteristic time-scale combustion model (CTC) incorporating a turbulent timescale is adopted to predict the combustion process and the SHELL auto-ignition model is used to predict auto-ignition. Combustion is also simulated using Parallel Detailed Chemistry with Lu's n-heptane reduced mechanism (58 species), which has been added into the KIVA3V-LES code. The computational results are compared with Sandia experimental data for non-reacting and reacting cases. As a result, LES can capture the complex structure of the spray and temperature distribution as well as the trend of ignition delay and flame lift-off length variations. Better results are obtained using the Parallel Detailed Chemistry than the CTC model.
Technical Paper

The Effect of Molecular Structure on Soot Emission of a Heavy-Duty Compression-Ignition Engine

2013-10-14
2013-01-2693
Numerous previous studies have reported that the reduction of emissions by adapting oxygenated bio-fuels chiefly depend on the overall oxygen percentage of the blended oxygenates. However, the effect of molecular structures of the fuels has sometimes only been attributed to differences in auto-ignition quality (i.e. cetane number). In this paper, fuels with two kinds of molecular structures, namely linear and cyclic, have been studied. It reports on emissions tests on a modified in-line 6-cylinder DAF HD Diesel engine with several selected oxygenates mixed with diesel. Fuels in question here are from the non-oxygenates group: n-hexane and cyclohexane, and the oxygenate group: 1-hexanol and cyclohexanol. In order to isolate the effect of molecular structure, the blend compositions are chosen such that the overall oxygen fraction of all blends is the same.
Technical Paper

Styrofoam Precursors as Drop-in Diesel Fuel

2013-09-08
2013-24-0108
Styrene, or ethylbenzene, is mainly used as a monomer for the production of polymers, most notably Styrofoam. In the synthetis of styrene, the feedstock of benzene and ethylene is converted into aromatic oxygenates such as benzaldehyde, 2-phenyl ethanol and acetophenone. Benzaldehyde and phenyl ethanol are low value side streams, while acetophenone is a high value intermediate product. The side streams are now principally rejected from the process and burnt for process heat. Previous in-house research has shown that such aromatic oxygenates are suitable as diesel fuel additives and can in some cases improve the soot-NOx trade-off. In this study acetophenone, benzaldehyde and 2-phenyl ethanol are each added to commercial EN590 diesel at a ratio of 1:9, with the goal to ascertain whether or not the lower value benzaldehyde and 2-phenyl ethanol can perform on par with the higher value acetophenone. These compounds are now used in pure form.
Technical Paper

Spray Analysis of the PFAMEN Injector

2013-09-08
2013-24-0036
In an earlier study, a novel type of diesel fuel injector was proposed. This prototype injects fuel via porous (sintered) micro pores instead of via the conventional 6-8 holes. The micro pores are typically 10-50 micrometer in diameter, versus 120-200 micrometer in the conventional case. The expected advantages of the so-called Porous Fuel Air Mixing Enhancing Nozzle (PFAMEN) injector are lower soot- and CO2 emissions. However, from previous in-house measurements, it has been concluded that the emissions of the porous injector are still not satisfactory. Roughly, this may have multiple reasons. The first one is that the spray distribution is not good enough, the second one is that the droplet sizing is too big due to the lack of droplet breakup. Furthermore air entrainment into the fuel jets might be insufficient. All reasons lead to fuel rich zones and associated soot formation.
Journal Article

Effect of Hot Exhaust Gas Recirculation on the Combustion Characteristics and Particles Emissions of a Pilot-Ignited Natural Gas Engine

2013-04-08
2013-01-1341
Natural gas has become an attractive alternative for diesel fuel due to its higher octane number, richer reserves and lower price. It has been utilized in compression ignition engines to obtain a higher thermal efficiency compared with spark ignition engines. However, its relatively higher auto-ignition temperature increases the difficulty of compression-ignition based on present hardware devices. One optimal ignition method is that a very small quantity of diesel fuel as the only ignition resource pilot-ignites the lean natural gas-air mixture. This micro diesel pilot-ignited natural gas premixed charge compression ignition (DPING-PCCI) combustion strategy is easy to implement without major hardware modifications, and can significantly reduce the NOx and particle mass emissions from diesel engines. Although the DPING-PCCI has so many advantages, it suffers from poor engine stability and high ultrafine particles emissions at part loads.
Technical Paper

Modeling of Conventional and Early Diesel Injection Combustion Characteristics using FGM Approach

2013-04-08
2013-01-1108
The wide range of diesel engine operating conditions demand for a robust combustion model to account for inherent changes. In this work, the Flamelet Generate Manifold (FGM) approach is applied, in STAR-CD framework, to simulate the conventional injection- and early injection-timing (PCCI like) combustion regimes. Igniting Counter flow Diffusion Flamelets (ICDFs) and Homogeneous Reactors (HRs) are used to tabulate chemistry for conventional and PCCI combustion modes, respectively. The validation of the models with experimental data shows that the above consideration of chemistry tabulation results in accurate ignition delay predictions. The study reveals that a moderate amount of 5 different pressure levels is necessary to include in the FGM database to capture the ignition delay in both combustion regimes.
Technical Paper

Mixing Effects of Early Injection in Diesel Spray Using LES Model with Different Subgrid Scale Models

2013-04-08
2013-01-1111
Early injection timing is an effective measure of pre-mixture formation for diesel low-temperature combustion. Three algebraic subgrid models (Smagorinsky model, dynamic Smagorinsky model and WALE model) and one-equation kinetic energy turbulent model using modified TAB breakup model (MTAB model) have been implemented into KIVA3V code to make a detailed large eddy simulation of the atomization and evaporation processes of early injection timing in a constant volume chamber and a Ford high-speed direct-injection diesel engine. The results show that the predictive vapor mass fraction and liquid penetration using LES is in good agreement with the experiment results. In combustion chamber, the sub-grid turbulent kinetic energy and viscosity using LES are less than with the RANS models, and following the increasing time, the sub-grid turbulent kinetic energy and viscosity also increase and are concentrated on the spray area.
Technical Paper

Experimental Investigation of Cycle-by-Cycle Variations in a Natural Gas/Diesel Dual Fuel Engine with EGR

2013-04-08
2013-01-0853
This study presents a detailed experimental investigation on the cycle-by-cycle variations in a natural gas/diesel dual fuel engine with EGR. The experiment used a single-cylinder, four-stroke, water-cooled, DI diesel engine. The EGR ratio, diesel injection timing and pilot diesel quantity were varied respectively while all the other parameters were held constant. The parameters of cylinder pressure are used to investigate the cyclic variations. The results show that the cylinder peak pressure, the maximum rate of pressure rise and the indicated mean effective pressure decrease. COVimep increases to 18.9% with 25% EGR ratio. The interdependency between the pressure parameters and their corresponding crank angles become weak with the increasing EGR ratio. The increasing EGR ratio increases the ignition delay. The cylinder peak pressure and the maximum rate of pressure rise increase dramatically with the advance of the pilot diesel injection timing.
Technical Paper

Gasoline - Ignition Improver - Oxygenate Blends as Fuels for Advanced Compression Ignition Combustion

2013-04-08
2013-01-0529
Mixing is inhibited both by the relatively low volatility of conventional diesel fuel and the short premixing time due to high fuel reactivity (i.e. cetane number (CN)). Consequently, in this research two promising oxygenates which can be produced from 2nd generation biomass -ethanol from cellulose and anisole from lignin - will be blended to gasoline, further doped with ignition improver. This will result in a diesel-like CN, but with a higher gasoline-like volatility. There is, however, also a more practical motivation for this study. In Europe, the dieselization trend is resulted in a growing excess of gasoline, which is currently largely exported to the USA at additional transport costs. Boosting the cetane number of gasoline into the diesel range with ignition improvers is a promising route to more efficiently consume European refinery products within Europe.
X