Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Classification and Characterization of Heat Release Rate Traces in Low Temperature Combustion for Optimal Engine Operation

2024-04-09
2024-01-2835
Low temperature combustion (LTC) modes are among the advanced combustion technologies which offer thermal efficiencies comparable to conventional diesel combustion and produce ultra-low NOx and particulate matter (PM) emissions. However, combustion timing control, excessive pressure rise rate and high cyclic variations are the common challenges encountered by the LTC modes. These challenges can be addressed by developing model-based control framework for the LTC engine. In the current study, in-cylinder pressure data for dual-fuel LTC engine operation is analyzed for 636 different operating conditions and the heat release rate (HRR) traces are classified into three distinct classes based on their distinct shapes. These classes are named as Type-1, Type-2 and Type-3, respectively.
Technical Paper

Evaluation of Engine and Aftertreatment Concepts for Proposed Tier 5 off-Road Emission Standards

2024-04-09
2024-01-2628
The global push towards reducing green-house gas and criteria pollutant emissions is leading to tighter emission standards for heavy-duty engines. Among the most stringent of these standards are the California Air Resource Board (CARB) 2024+ HD Omnibus regulations adopted by the agency in August 2020. The CARB 2024+ HD Omnibus regulations require up to 90% reduction in NOx emissions along with updated compliance testing methods for on-road heavy-duty engines. Subsequently, the agency announced development of new Tier 5 standards for off-road engines in November 2021. The Tier 5 standards aim to reduce NOx/PM emissions by 90%/75% respectively from Tier 4 final levels, along with introduction of greenhouse gas emission standards for CO2/CH4/N2O/NH3. Furthermore, CARB is also considering similar updates on compliance testing as those implemented in 2024+ HD Omnibus regulations including, low-load cycle, idle emissions and 3-bin moving average in-use testing.
Technical Paper

Experimental and Numerical Study of Water Injection under Gasoline Direct Injection Engine Relevant Conditions

2023-04-11
2023-01-0313
Water injection has been used to reduce the charge temperature and mitigate knocking due to its higher latent heat of vaporization compared to gasoline fuel. When water is injected into the intake manifold or into the cylinder, it evaporates by absorbing heat energy from the surrounding and results in charge cooling. However, the effect of detailed evaporation process on the combustion characteristics under gasoline direct injection relevant conditions still needs to be investigated. Therefore, spray study was firstly conducted using a multi-hole injector by injecting pure water and water-methanol mixture into constant volume combustion chamber (CVCC) at naturally aspirated and boosted engine conditions. The target water-fuel ratio was fixed at 0.5. Mie-scattering and schlieren images of sprays were analyzed to study spray characteristics, and evaluate the amount of water vaporization.
Technical Paper

Application of 48V Mild-Hybrid Technology for Meeting GHG and Low NOx Emission Regulations for MHD Vehicles

2023-04-11
2023-01-0484
Vehicle OEM’s for MHD applications are facing significant challenges in meeting the stringent 2027 low-NOx and GHG emissions regulations. To meet such challenges, advanced engine and aftertreatment technologies along with powertrain electrification are being applied to achieve robust solutions. FEV has previously conducted model-based assessments to show the potential of 48V engine and aftertreatment technologies to simultaneously meet GHG and low NOx emission standards. This study focuses on evaluating the full potential of 48V electrification technology through addition of 48V P3 hybrid system to the previously developed 48V advanced engine and aftertreatment technology package. Previously, a model-based approach was utilized for selection and sizing of a 48V system-enabled engine and aftertreatment package for class 6-7 MHD application.
Technical Paper

Operation of a Natural Gas Direct Injection Compression Ignition Single Cylinder Research Engine

2023-04-11
2023-01-0260
The medium and heavy-duty powertrain industry trend is to reduce reliance on diesel fuel and is aligned with continued efforts of achieving ultra-low emissions and high brake efficiencies. Compression Ignition (CI) of late cycle Directly Injected (DI) Natural Gas (NG) shows the potential to match diesel performance in terms of brake efficiency and power density, with the benefit of utilizing a lower carbon content fuel. A primary challenge is to achieve stable ignition of directly injected NG over a wide engine speed and load range without the need for a separate ignition source. This project aims to demonstrate the CI of DI NG through experimental studies with a Single Cylinder Research Engine (SCRE), leading to the development of a mono-fueled NG engine with equivalent performance to that of current diesel technology, 25% lower CO2 emissions, and low engine out methane emissions.
Technical Paper

Evaluation of 48V Technologies to Meet Future CO2 and Low NOx Emission Regulations for Medium Heavy-Duty Diesel Engines

2022-03-29
2022-01-0555
The Environmental Protection Agency (EPA) and California Air Resources Board (CARB) have recently announced rulemakings focused on tighter emission limits for oxides of nitrogen (NOx) from heavy-duty trucks. As part of the new rulemaking CARB has proposed a Low Load Cycle (LLC) to specifically evaluate NOx emission performance over real-world urban and vocational operation typically characterized by low engine loads, thereby demanding the implementation of continuous active thermal management of the engine and aftertreatment system. This significant drop in NOx levels along with continued reduction in the Green House Gas (GHG) limits poses a more significant challenge for the engine developer as the conventional emission reduction approaches for one species will likely result in an undesirable increase in the other species.
Technical Paper

Multi-Variable Sensitivity Analysis and Ranking of Control Factors Impact in a Stoichiometric Micro-Pilot Natural Gas Engine at Medium Loads

2022-03-29
2022-01-0463
A diesel piloted natural gas engine's performance varies depending on operating conditions and has performed best under medium to high loads. It can often equal or better the fuel conversion efficiency of a diesel-only engine in this operating range. This paper presents a study performed on a multi-cylinder Cummins ISB 6.7L diesel engine converted to run stoichiometric natural gas/diesel micro-pilot combustion with a maximum diesel contribution of 10%. This study systematically quantifies and ranks the sensitivity of control factors on combustion and performance while operating at medium loads. The effects of combustion control parameters, including the pilot start of injection, pilot injection pressure, pilot injection quantity, exhaust gas recirculation, and global equivalence ratio, were tested using a design of experiments orthogonal matrix approach.
Technical Paper

NVH Methodologies for Electrified Drive Unit Development

2021-08-31
2021-01-1098
The automotive industry continues to develop new powertrain and vehicle technologies aimed at reducing overall vehicle-level fuel consumption. Specifically, the use of electrified propulsion systems, including electrified and electric drive units (EDU), is expected to play a significant role in helping OEMs meet fleet CO2 reduction targets for 2025 and beyond. The change to vehicles propelled by electrified powertrains leads to a reduction in vehicle noise levels. Despite the overall noise levels being low, the NVH behavior of such vehicles can be objectionable due to the presence of tonal noise coming from electric machines and geartrain components. In order to ensure customer acceptance of electrically propelled vehicles, it is imperative that these NVH challenges are understood and solved. Specifically, this paper discusses the EDU NVH development process. This includes considerations for CAE/test-based development and validation processes to ensure optimal NVH development.
Technical Paper

Impact of Fuel Detergent Type and Concentration on the Rate and Severity of Stochastic Preignition in a Turbocharged Spark Ignition Direct Injection Gasoline Engine

2021-04-06
2021-01-0490
Stochastic Preignition (SPI) is an abnormal combustion event that occurs in a turbocharged engine and can lead to the loss in fuel economy and engine hardware damage, and in turn result in customer dissatisfaction. It is a significant limiting factor on the use and continued downsizing of turbocharged spark ignited direct injection (SIDI) gasoline engines. Understanding and mitigating all the factors that cause and influence the rate and severity of SPI occurrence are of critical importance to the engine’s continued use and fuel economy improvements for future designs. Previous studies have shown that the heavy molecular weight components of the fuel formulations are one factor that influences the rate of SPI from a turbocharged SIDI gasoline engine. All the previous studies have involved analyzing the fuel’s petroleum hydrocarbon chemistry, but not specifically the additives that are put in the fuel to protect and clean the internal components over the life of the engine.
Journal Article

Evaluation of Hybrid, Electric and Fuel Cell Powertrain Solutions for Class 6-7 Medium Heavy-Duty Vehicles

2021-04-06
2021-01-0723
Electrification of heavy-duty trucks has received significant attention in the past year as a result of future regulations in some states. For example, California will require a certain percentage of tractor trailers, delivery trucks and vans sold to be zero emission by 2035. However, the relatively low energy density of batteries in comparison to diesel fuel, as well as the operating profiles of heavy-duty trucks, make the application of electrified powertrain in these applications more challenging. Heavy-duty vehicles can be broadly classified into two main categories; long-haul tractors and vocational vehicles. Long-haul tractors offer limited benefit from electrification due to the majority of operation occurring at constant cruise speeds, long range requirements and the high efficiency provided by the diesel engine.
Technical Paper

Probing Spark Discharge Behavior in High-speed Cross-flows through Modeling and Experimentation

2020-04-14
2020-01-1120
This paper presents a combined numerical and experimental investigation of the characteristics of spark discharge in a spark-ignition engine. The main objective of this work is to gain insights into the spark discharge process and early flame kernel development. Experiments were conducted in an inert medium within an optically accessible constant-volume combustion vessel. The cross-flow motion in the vessel was generated using a previously developed shrouded fan. Numerical modeling was based on an existing discharge model in the literature developed by Kim and Anderson. However, this model is applicable to a limited range of gas pressures and flow fields. Therefore, the original model was evaluated and improved to predict the behavior of spark discharge at pressurized conditions up to 45 bar and high-speed cross-flows up to 32 m/s. To accomplish this goal, a parametric study on the spark channel resistance was conducted.
Technical Paper

An Analytical Energy-budget Model for Diesel Droplet Impingement on an Inclined Solid Wall

2020-04-14
2020-01-1158
The study of spray-wall interaction is of great importance to understand the dynamics that occur during fuel impingement onto the chamber wall or piston surfaces in internal combustion engines. It is found that the maximum spreading length of an impinged droplet can provide a quantitative estimation of heat transfer and energy transformation for spray-wall interaction. Furthermore, it influences the air-fuel mixing and hydrocarbon and particle emissions at combusting conditions. In this paper, an analytical model of a single diesel droplet impinging on the wall with different inclined angles (α) is developed in terms of βm (dimensionless maximum spreading length, the ratio of maximum spreading length to initial droplet diameter) to understand the detailed impinging dynamic process.
Technical Paper

Fuel Properties and Their Impact on Stochastic Pre-Ignition Occurrence and Mega-Knock in Turbocharged Direct-Injection Gasoline Engines

2020-04-14
2020-01-0614
Stochastic Pre-Ignition (SPI) or Low Speed Pre-Ignition (LSPI) is an abnormal combustion event that can occur during the operation of modern, highly boosted direct-injection gasoline engines. This abnormal combustion event is characterized by an undesired and early start of combustion that is not initiated by the spark plug. Early SPI events can subsequently lead to violent auto-ignitions that are referred to as Mega- or Super-Knock in literature and have the potential to severely damage engines in the field. Numerous studies to analyze impact factors on SPI occurrence and severity have been conducted in recent years. While initial studies have focused strongly on engine oil formulation, calibration and engine design and their respective impact on SPI initiation, the impact of physical and chemical properties of the fuel have also become of interest in recent years.
Technical Paper

Investigation of Diesel-CNG RCCI Combustion at Multiple Engine Operating Conditions

2020-04-14
2020-01-0801
Past experimental studies conducted by the current authors on a 13 liter 16.7:1 compression ratio heavy-duty diesel engine have shown that diesel-Compressed Natural Gas (CNG) Reactivity Controlled Compression Ignition (RCCI) combustion targeting low NOx emissions becomes progressively difficult to control as the engine load is increased. This is mainly due to difficulty in controlling reactivity levels at higher loads. For the current study, CFD investigations were conducted in CONVERGE using the SAGE combustion solver with the application of the Rahimi mechanism. Studies were conducted at a load of 5 bar BMEP to validate the simulation results against RCCI experimental data. In the low load study, it was found that the Rahimi mechanism was not able to predict the RCCI combustion behavior for diesel injection timings advanced beyond 30 degCA bTDC. This poor prediction was found at multiple engine speed and load points.
Technical Paper

Experimental Investigation of the Compression Ignition Process of High Reactivity Gasoline Fuels and E10 Certification Gasoline using a High-Pressure Direct Injection Gasoline Injector

2020-04-14
2020-01-0323
Gasoline compression ignition (GCI) technology shows the potential to obtain high thermal efficiencies while maintaining low soot and NOx emissions in light-duty engine applications. Recent experimental studies and numerical simulations have indicated that high reactivity gasoline-like fuels can further enable the benefits of GCI combustion. However, there is limited empirical data in the literature studying the gasoline compression ignition process at relevant in-cylinder conditions, which are required for further optimizing combustion system designs. This study investigates the temporal and spatial evolution of the compression ignition process of various high reactivity gasoline fuels with research octane numbers (RON) of 71, 74 and 82, as well as a conventional RON 97 E10 gasoline fuel. A ten-hole prototype gasoline injector specifically designed for GCI applications capable of injection pressures up to 450 bar was used.
Technical Paper

Trade-Off Analysis and Systematic Optimization of a Heavy-Duty Diesel Hybrid Powertrain

2020-04-14
2020-01-0847
While significant progress has been made in recent years to develop hybrid and battery electric vehicles for passenger car and light-duty applications to meet future fuel economy targets, the application of hybrid powertrains to heavy-duty truck applications has been very limited. The relatively lower energy and power density of batteries in comparison to diesel fuel and the operating profiles of most heavy-duty trucks, combine to make the application of hybrid powertrain for these applications more challenging. The high torque and power requirements of heavy-duty trucks over a long operating range, the majority of which is at constant cruise point, along with a high payback period, complexity, cost, weight and range anxiety, make the hybrid and battery electric solution less attractive than a conventional powertrain.
Technical Paper

Effect of Fuel Type and Tip Deposits on End of Injection Spray Characteristics of Gasoline Direct Injection Fuel Injectors

2019-10-22
2019-01-2600
There has been a great effort expended in identifying causes of Hydro-Carbon (HC) and Particulate Matter (PM) emissions resulting from poor spray preparation, leading to characterization of fueling behavior near nozzle. It has been observed that large droplet size is a primary contributor to HC and PM emission. Imaging technologies have been developed to understand the break-up and consistency of fuel spray. However, there appears to be a lack of studies of the spray characteristics at the End of Injection (EOI), near nozzle, in particular, the effect that tip deposits have on the EOI characteristics. Injector tip deposits are of interest due to their effect on not only fuel spray characteristics, but also their unintended effect on engine out emissions. Using a novel imaging technique to extract near nozzle fuel characteristics at EOI, the impact of tip deposits on Gasoline Direct Injection (GDI) fuel injectors at the EOI is being examined in this work.
Technical Paper

NVH Aspects of Electric Drive Unit Development and Vehicle Integration

2019-06-05
2019-01-1454
The automotive industry continues to develop new powertrain and vehicle technologies aimed at reducing overall vehicle-level fuel consumption. Specifically, the use of electrified propulsion systems is expected to play an increasingly important role in helping OEM’s meet fleet CO2 reduction targets for 2025 and beyond. This will also include a strong growth in the global demand for electric drive units (EDUs). The change from conventional vehicles to vehicles propelled by EDUs leads to a reduction in overall vehicle exterior and interior noise levels, especially during low-speed vehicle operation. Despite the overall noise levels being low, the NVH behavior of such vehicles can be objectionable due to the presence of tonal noise coming from electric machines and geartrain components as well as relatively high shares of road/wind noise. In order to ensure customer acceptance of electrically propelled vehicles, it is imperative that these NVH challenges are understood and solved.
Technical Paper

Impinged Diesel Spray Combustion Evaluation for Indirect Air-Fuel Mixing Processes and Its Comparison with Non-Vaporing Impinging Spray Under Diesel Engine Conditions

2019-04-02
2019-01-0267
Under low-temperature combustion for the high fuel efficiency and low emissions achievement, the fuel impingement often occurs in diesel engines with direct injection especially for a short distance between the injector and piston head/cylinder wall. Spray impingement plays an important role in the mixing-controlled combustion phase since it affects the air-fuel mixing rate through the disrupted event by the impingement. However, the degree of air entrainment into the spray is hard to be directly evaluated. Since the high spray expansion rate could allow more opportunity for fuel to mix with air, in this study, the expansion rate of impinged flame is quantified and compared with the spray expansion rate under non-vaporizing conditions. The experiments were conducted in a constant volume combustion chamber with an ambient density of 22.8 kg/m3 and the injection pressure of 150 MPa.
Technical Paper

Analysis of the Impact of Production Lubricant Composition and Fuel Dilution on Stochastic Pre-Ignition in Turbocharged, Direct-Injection Gasoline Engines

2019-04-02
2019-01-0256
The occurrence of abnormal combustion events leading to high peak pressures and severe knock can be considered to be one of the main challenges for modern turbocharged, direct-injected gasoline engines. These abnormal combustion events have been referred to as Stochastic Pre-Ignition (SPI) or Low-Speed Pre-Ignition (LSPI). The events are characterized by an undesired, early start of combustion of the cylinder charge which occurs before or in parallel to the intended flame kernel development from the spark plug. Early SPI events can subsequently lead to violent auto-ignitions that are often referred to as Mega- or Super-Knock. These heavy knock events lead to strong pressure oscillations which can destroy production engines within a few occurrences. SPI occurs mainly at low engine speed and high engine load, thus limiting the engine operating area that is in particular important to achieve good drivability in downsized engines.
X