Refine Your Search

Topic

Author

Search Results

Technical Paper

Development of a Soft-Actor Critic Reinforcement Learning Algorithm for the Energy Management of a Hybrid Electric Vehicle

2024-06-12
2024-37-0011
In recent years, the urgent need to fully exploit the fuel economy potential of the Electrified Vehicles (xEVs) through the optimal design of their Energy Management System (EMS) have led to an increasing interest in Machine Learning (ML) techniques. Among them, Reinforcement Learning (RL) seems to be one of the most promising approaches thanks to its peculiar structure, in which an agent is able to learn the optimal control strategy through the feedback received by a direct interaction with the environment. Therefore, in this study, a new Soft Actor-Critic agent (SAC), which exploits a stochastic policy, was implemented on a digital twin of a state-of-the-art diesel Plug-in Hybrid Electric Vehicle (PHEV) available on the European market. The SAC agent was trained to enhance the fuel economy of the PHEV while guaranteeing its battery charge sustainability.
Technical Paper

A Numerical Model for the Virtual Calibration of a Highly Efficient Spark Ignition Engine

2023-09-29
2023-32-0059
Nowadays numerical simulations play a major role in the development of future sustainable powertrain thanks to their capability of investigating a wide spectrum of innovative technologies with times and costs significantly lower than a campaign of experimental tests. In such a framework, this paper aims to assess the predictive capabilities of an 1D-CFD engine model developed to support the design and the calibration of the innovative highly efficient spark ignition engine of the PHOENICE (PHev towards zerO EmissioNs & ultimate ICE efficiency) EU H2020 project. As a matter of fact, the availability of a reliable simulation platform is crucial to achieve the project target of 47% peak indicating efficiency, by synergistically exploiting the combination of innovative in-cylinder charge motion, Miller cycle with high compression ratio, lean mixture with cooled Exhaust Gas Recirculation (EGR) and electrified turbocharger.
Technical Paper

A Comparison of Methanol, Methane and Hydrogen Fuels for SI Engines: Performance and Pollutant Emissions

2023-08-28
2023-24-0037
The urban mobility electrification has been proposed as the main solution to the vehicle emission issues in the next years. However, internal combustion engines have still great potential to decarbonize the transport sector through the use of low/zero-carbon fuels. Alcohols such us methanol, have long been considered attractive alternative fuels for spark ignition engines. They have properties similar to those of gasoline, are easy to transport and store. Recently, great attention has been devoted to gaseous fuels that can be used in existing engine after minor modification allowing to drastically reduce the pollutant emissions. In this regard, this study tries to provide an overview on the use of alternative fuels, both liquid and gaseous in spark ignition engines, highlighting the benefits as well as the criticalities. The investigation was carried out on a small displacement spark ignition engine capable to operate both in port fuel and direct injection mode.
Technical Paper

Development of a Digital Twin to Support the Calibration of a Highly Efficient Spark Ignition Engine

2023-06-26
2023-01-1215
The role of numerical simulations in the development of innovative and sustainable powertrains is constantly growing thanks to their capabilities to significantly reduce the calibration efforts and to point out potential synergies among different technologies. In such a framework, this paper describes the development of a fully physical 1D-CFD engine model to support the calibration of the highly efficient spark ignition engine of the PHOENICE (PHev towards zerO EmissioNs & ultimate ICE efficiency) EU H2020 project. The availability of a reliable simulation platform is essential to effectively exploit the combination of the several features introduced to achieve the project target of 47% peak gross indicated efficiency, such as SwumbleTM in-cylinder charge motion, Miller cycle combined with high Compression Ratio (CR), lean mixture exploiting cooled low pressure Exhaust Gas Recirculation (EGR) and electrified turbocharging.
Technical Paper

Numerical Assessment of Port Water Injection Capabilities to Reduce CO2 Emissions of a Lambda 1 Turbocharged Spark Ignition Engine

2023-04-11
2023-01-0181
The continuous tightening of CO2 emission targets along with the introduction of Real Driving Emissions (RDE) tests make Water Injection (WI) one of the most promising solutions to improve efficiency, enhance performance and reduce emissions of turbocharged high-performance Spark Ignition engines. This technology, by reducing local in-cylinder mixture temperature, enables higher compression ratios, optimal spark timing and stoichiometric combustion over the entire engine operating range. This research activity, therefore, aims to assess the benefits in terms of CO2 emission reduction of a Port Water Injection (PWI) system integrated in a Downsized Turbocharged Direct Injection Spark Ignition (T-DISI) Engine. In this regard, a 1D-CFD model of the engine capable to predict the impact of the water content on both the combustion process and the knock likelihood was firstly developed.
Technical Paper

A Synergic Use of Innovative Technologies for the Next Generation of High Efficiency Internal Combustion Engines for PHEVs: The PHOENICE Project

2023-04-11
2023-01-0224
Despite the legislation targets set by several governments of a full electrification of new light-duty vehicle fleets by 2035, the development of innovative, environmental-friendly Internal Combustion Engines (ICEs) is still crucial to be on track toward the complete decarbonization of on road-mobility of the future. In such a framework, the PHOENICE (PHev towards zerO EmissioNs & ultimate ICE efficiency) project aims at developing a C SUV-class plug-in hybrid (P0/P4) vehicle demonstrator capable to achieve a -10% fuel consumption reduction with respect to current EU6 vehicle while complying with upcoming EU7 pollutant emissions limits. Such ambitious targets will require the optimization of the whole engine system, exploiting the possible synergies among the combustion, the aftertreatment and the exhaust waste heat recovery systems.
Technical Paper

The Effect of Ethanol and Methanol Blends on the Performance and the Emissions of a Turbocharged GDI Engine Operating in Transient Condition

2022-09-16
2022-24-0037
Direct injection spark ignition engines represent an effective technology to achieve the goal of carbon dioxide emission reduction. Further reduction of the carbon footprint can be achieved by using carbon-neutral fuels. Oxygenated alcohols are well consolidated fuels for spark ignition engines providing also the advantages of knock resistance and low soot tendency production. Methanol and ethanol are possible candidates as alternative fuels to gasoline due to their similar properties. In this study a blend at 25 % v/v of ethanol in gasoline (E25) and a blend with 80% gasoline, 5 % v/v ethanol and 15% v/v of methanol (GEM) were tested. These blends were considered since E25 is already available at fuel pump in some countries. The GEM blend, instead, could represent a valid alternative in the next future. Experiments were carried out on a high performance, turbocharged 1.8 L direct injection spark ignition engine over the Worldwide Harmonized Light Vehicles Test Cycle.
Technical Paper

Sub-23 nm Particle Measurement and Assessment of Their Volatile Fraction at Exhaust of a Four Cylinder GDI Engine Fueled with E10 and E85 Under Transient Conditions

2021-09-05
2021-24-0087
In view of the new emission regulations seeking to lower the particle cut-off size down to the current 23 nm, an extensive comprehension on the nature of sub-23 nm particles is crucial. In this regard, a new challenge lies ahead considering an even more massive use of biofuels. The objective of this research study was to characterize the sub-23 nm particles and to evaluate their volatile organic fraction (VOF) from a high performance, 1.8 L gasoline direct injection (GDI) engine under the Worldwide harmonized Light vehicles Test Cycle (WLTC). Particle emissions were measured through an Engine Exhaust Particle Sizer (EEPS) capable of particle sizing and counting in the range 5.6 - 560 nm. The sampling and conditioning were performed by both a single diluter and the Dekati Engine Exhaust Diluter (DEED) a Particle Measurement Programme (PMP) compliant sample conditioning system.
Technical Paper

Laminar Flame Speed Based Optimization of Efficiency and Emissions for Methane-Hydrogen Fueled SI Micro-Generators

2021-09-05
2021-24-0047
Within the context of environmental impact reduction for small size spark ignition (SI) engines, especially green-house gas emissions, this study looked at laminar flame speed as an optimization parameter for hydrogen-methane fueled micro-generators. To this aim, SI engine operation was modeled in a 0D/1D simulation framework, so as to identify the best choice of methane-hydrogen ratios in different conditions. Starting from experimental data recorded on a small size engine, an optimization method was implemented for achieving the proposed goal. One of the main conclusions is that high concentrations of hydrogen and resulting fast burn rates are beneficial at high engine speed settings, while the opposite is true at low engine speed. Hydrogen addition was also considered as an additional control margin during lean operation, given that stable combustion can be achieved even with very low equivalence ratios.
Technical Paper

Experimental and Numerical Investigation of a Passive Pre-Chamber Jet Ignition Single-Cylinder Engine

2021-09-05
2021-24-0010
In the framework of an increasing demand for a more sustainable mobility, where the fuel consumption reduction is a key driver for the development of innovative internal combustion engines, Turbulent Jet Ignition (TJI) represents one of the most promising solutions to improve the thermal efficiency. However, details concerning turbulent jet assisted combustion are still to be fully captured, and therefore the design and the calibration of efficient TJI systems require the support of reliable simulation tools that can provide additional information not accessible through experiments. To this aim, an experimental investigation combined with a 3D-CFD study was performed to analyze the TJI combustion characteristics in a single-cylinder spark-ignition (SI) engine. Firstly, the model was validated against experiments considering stoichiometric mixture at 3000 rpm, wide open throttle operating conditions.
Technical Paper

Turbulent Jet Ignition Effect on Exhaust Emission and Efficiency of a SI Small Engine Fueled with Methane and Gasoline

2020-09-27
2020-24-0013
Pollutant emission of vehicle cars is nowadays a fundamental aspect to take into account. In the last decays, the company have been forced to study new solutions, such as alternative fuel and learn burn mixture strategy, to reduce the vehicle’s pollutants below the limits imposed by emission regulations. Pre-chamber ignition system presents potential reductions in emission levels and fuel consumption, operating with lean burn mixtures and alternative fuels. As alternative fuels, methane is considered one of the most interesting. It has wider flammable limits and better anti-knock properties than gasoline. Moreover, it is characterized by lower CO2 emissions. The aim of this work is to study the evolution of the plasma jets in a different in-cylinder conditions. The activity was carried out in a research optical small spark ignition engine equipped alternatively with standard ignition system and per-chamber.
Technical Paper

Analysis of the Combustion Process of SI Engines Equipped with Non-Conventional Ignition System Architecture

2020-06-30
2020-37-0035
The use of lean or ultra-lean ratios is an efficient and proven strategy to reduce fuel consumption and pollutant emissions. However, the lower fuel concentration in the cylinder hinders the mixture ignition, requiring greater energy to start the combustion. The prechamber is an efficient method to provide high energy favoring the ignition process. It presents the potential to reduce the emission levels and the fuel consumption, operating with lean burn mixtures and expressive combustion stability. In this paper the analysis of the combustion process of SI engines equipped with an innovative architecture and operating in different injection modes was described. In particular, the effect of the prechamber ignition on the engine stability and the efficiency was investigated in stoichiometric and lean-burn operation conditions. The activity was carried out in two parts.
Technical Paper

Development of a Sectional Soot Model Based Methodology for the Prediction of Soot Engine-Out Emissions in GDI Units

2020-04-14
2020-01-0239
With the aim of identifying technical solutions to lower the particulate matter emissions, the engine research community made a consistent effort to investigate the root causes leading to soot formation. Nowadays, the computational power increase allows the use of advanced soot emissions models in 3D-CFD turbulent reacting flows simulations. However, the adaptation of soot models originally developed for Diesel applications to gasoline direct injection engines is still an ongoing process. A limited number of studies in literature attempted to model soot produced by gasoline direct injection engines, obtaining a qualitative agreement with the experiments. To the authors’ best knowledge, none of the previous studies provided a methodology to quantitatively match particulate matter, particulate number and particle size distribution function measured at the exhaust without a case-by-case soot model tuning.
Technical Paper

Real Time Energy Management Control Strategies for an Electrically Supercharged Gasoline Hybrid Vehicle

2020-04-14
2020-01-1009
The high level of electric power available on a Hybrid Electric Vehicle (HEV) enables the introduction of electrical auxiliaries in addition or in substitution to the ones currently available on a conventional powertrain. Among these auxiliaries, electric Superchargers (eSC) for the improvement of the vehicle performance or electrically heated catalysts for the reduction of the light-off time of the after-treatment may dramatically affect the Energy Management System (EMS) of an HEV. Moreover, since these devices are only fluid-dynamically, but not mechanically, linked to the powertrain, they are traditionally neglected in the optimization of the powersplit between internal combustion engine and electric machines by the EMS. The aim of the current work is the development of an EMS that is able to consider in real time the overall electric energy consumption of the entire powertrain.
Technical Paper

Effects of Prechamber on Efficiency Improvement and Emissions Reduction of a SI Engine Fuelled with Gasoline

2019-10-07
2019-24-0236
The permanent aim of the automotive industry is the further improvement of the engine efficiency and the simultaneous pollutant emissions reduction. The aim of the study was the optimization of the gasoline combustion by means of a passive prechamber. This analysis allowed the improvement of the engine efficiency in lean-burn operation condition too. The investigation was carried out in a commercial small Spark Ignition (SI) engine fueled with gasoline and equipped with a proper designed passive prechamber. It was analyzed the effects of the prechamber on engine performance, Indicated Mean Effective Pressure, Heat Release Rate and Fuel Consumption were used. Gaseous emissions were measured as well. Particulate Mass, Number and Size Distributions were analyzed. Emissions samples were taken from the exhaust flow, just downstream of the valves. Four different engine speeds were investigated, namely 2000, 3000, 4000 and 5000 rpm.
Technical Paper

Experimental Investigation of a Fueled Prechamber Combustion in an Optical Small Displacement SI Methane Engine

2019-09-09
2019-24-0170
The constant aim of the automotive industry is the further improvement of engine efficiency and the simultaneous reduction of the exhaust emissions. In order to optimize the internal combustion engines it is necessary to further improve the basic knowledge of the thermo-fluid dynamic phenomena occurring during the combustion process. In this context, the application of optical diagnostic techniques permits a deep insight into the fundamental processes such as flow development, fuel injection, and combustion process. In this paper the analysis of the combustion process of gaseous fuel ignited by the plasma jets coming from a prechamber was performed. The investigation was carried out in an optically accessible small Direct Injection Spark-Ignition (DI SI) engine fueled with Methane. The ignition was obtained with a properly designed fueled prechamber prototype.
Technical Paper

Quasi-Dimensional Simulation of Downsizing and Inverter Application for Efficient Part Load Operation of Spark Ignition Engine Driven Micro-Cogeneration Systems

2018-10-30
2018-32-0061
Within the context of distributed power generation, small size systems driven by spark ignition engines represent a valid and user-friendly choice, that ensures good fuel flexibility. One issue is that such applications are run at part load for extensive periods, thus lowering fuel economy. Employing an inverter (fitted between the generator and load) allows engine operation within a wide range of crankshaft rotational velocity, therefore improving efficiency. For the purpose of evaluating the benefits of this technology within a co-generation framework, two configurations were modeled by using the GT-Power simulation software. After model calibration based on measurements on a small size engine for two-wheel applications, the downsized version was compared to a larger power unit operated at constant engine speed for a scenario that featured up to 10 kW rated power.
Technical Paper

Supercar Hybridization: A Synergic Path to Reduce Fuel Consumption and Improve Performance

2018-05-30
2018-37-0009
The trend towards powertrain electrification is expected to grow significantly in the next future also for super-cars. The aim of this paper is therefore to assess, through numerical simulation, the impact on both fuel economy and performance of different 48 Volt mild hybrid architectures for a high-performance sport car featuring a Turbocharged Direct Injection Spark Ignition (TDISI) engine. In particular the hybrid functionalities of both a P0 (Belt Alternator Starter - BAS) and a P2 (Flywheel Alternator Starter - FAS) architecture were investigated and optimized for this kind of application through a global optimization algorithm. The analysis pointed out CO2 emission reductions potential of about 6% and 25% on NEDC, 7% and 28% on WLTC for P0 and P2 respectively. From the performance perspective, a 10% reduction in the time-to-torque was highlighted for both architectures in a load step maneuver at 2000 RPM constant speed.
Technical Paper

Influence of Combustion Efficiency on the Operation of Spark Ignition Engines Fueled with Methane and Hydrogen Investigated in a Quasi-Dimensional Simulation Framework

2018-05-30
2018-37-0012
Within the context of widening application of numerical simulations for shortening engine development times, the present work covers the issue of quasi-dimensional simulation of spark ignition engines. Multi-fuel operation was the main goal of the study, with the analysis of methane and its blends with hydrogen; gasoline was also considered as a reference case. Data recorded on two engines with practically the same geometry, was used for calibrating the model. The first power unit was of commercial derivation for small applications, while the second one featured optical accessibility through the piston crown. The relative difference between the two engines allowed the top-land region crevice to be identified as the major contributor to overall combustion evolution, especially during its late stages.
Technical Paper

A Methodology for Modeling the Cat-Heating Transient Phase in a Turbocharged Direct Injection Spark Ignition Engine

2017-09-04
2017-24-0010
This paper presents the modeling of the transient phase of catalyst heating on a high-performance turbocharged spark ignition engine with the aim to accurately predict the exhaust thermal energy available at the catalyst inlet and to provide a “virtual test rig” to assess different design and calibration options. The entire transient phase, starting from the engine cranking until the catalyst warm-up is completed, was taken into account in the simulation, and the model was validated using a wide data-set of experimental tests. The first step of the modeling activity was the combustion analysis during the transient phase: the burn rate was evaluated on the basis of experimental in-cylinder pressure data, considering both cycle-to-cycle and cylinder-to-cylinder variations.
X