Refine Your Search

Search Results

Technical Paper

Effects of Seat and Sitter Dimensions on Pressure Distribution in Automotive Seats

2017-03-28
2017-01-1390
Seat fit is characterized by the spatial relationship between the seat and the vehicle occupant’s body. Seat surface pressure distribution is one of the best available quantitative measures of this relationship. However, the relationships between sitter attributes, pressure, and seat fit have not been well established. The objective of this study is to model seat pressure distribution as a function of the dimensions of the seat and the occupant’s body. A laboratory study was conducted using 12 production driver seats from passenger vehicles and light trucks. Thirty-eight men and women sat in each seat in a driving mockup. Seat surface pressure distribution was measured on the seatback and cushion. Relevant anthropometric dimensions were recorded for each participant and standardized dimensions based on SAE J2732 (2008) were acquired for each test seat.
Journal Article

Evaluation of the Seat Index Point Tool for Military Seats

2016-04-05
2016-01-0309
This study evaluated the ISO 5353 Seat Index Point Tool (SIPT) as an alternative to the SAE J826 H-point manikin for measuring military seats. A tool was fabricated based on the ISO specification and a custom back-angle measurement probe was designed and fitted to the SIPT. Comparisons between the two tools in a wide range of seating conditions showed that the mean SIP location was 5 mm aft of the H-point, with a standard deviation of 7.8 mm. Vertical location was not significantly different between the two tools (mean - 0.7 mm, sd 4.0 mm). A high correlation (r=0.9) was observed between the back angle measurements from the two tools. The SIPT was slightly more repeatable across installations and installers than the J826 manikin, with most of the discrepancy arising from situations with flat seat cushion angles and either unusually upright or reclined back angles that caused the J826 manikin to be unstable.
Technical Paper

Statistical Modeling of Automotive Seat Shapes

2016-04-05
2016-01-1436
Automotive seats are commonly described by one-dimensional measurements, including those documented in SAE J2732. However, 1-D measurements provide minimal information on seat shape. The goal of this work was to develop a statistical framework to analyze and model the surface shapes of seats by using techniques similar to those that have been used for modeling human body shapes. The 3-D contour of twelve driver seats of a pickup truck and sedans were scanned and aligned, and 408 landmarks were identified using a semi-automatic process. A template mesh of 18,306 vertices was morphed to match the scan at the landmark positions, and the remaining nodes were automatically adjusted to match the scanned surface. A principal component (PC) analysis was performed on the resulting homologous meshes. Each seat was uniquely represented by a set of PC scores; 10 PC scores explained 95% of the total variance. This new shape description has many applications.
Technical Paper

Development of an Automatic Seat-Dimension Extraction System

2016-04-05
2016-01-1429
This paper reports on the development and validation of an automated seat-dimension extraction system that can efficiently and reliably measure SAE J2732 (2008) seat dimensions from 3D seat scan data. The automated dimension-extraction process consists of four phases: (1) import 3D seat scan data along with seat reference information such as H-point location, back and cushion angles, (2) calculate centerline and lateral cross-section lines on the imported 3D seat scan data, (3) identify landmarks on the centerline and cross-section lines based on the SAE J2732 definitions, and (4) measure seat-dimensions using the identified landmarks. To validate the automated seat measurements, manually measured dimensions in a computer-aided-design (CAD) environment and automatically extracted ones in the current system were compared in terms of mean discrepancy and intra- and inter-observer standard deviations (SD).
Technical Paper

A Pilot Study of Occupant Accommodation and Seat Belt Fit for Law Enforcement Officers

2016-04-05
2016-01-1504
Law enforcement officers (LEO) make extensive use of vehicles to perform their jobs, often spending large portions of a shift behind the wheel. Few LEO vehicles are purpose-built; the vast majority are modified civilian vehicles. Data from the field indicate that LEO suffer from relatively high levels musculoskeletal injury that may be due in part to poor accommodation provided by their vehicles. LEO are also exposed to elevated crash injury risk, which may be exacerbated by a compromise in the performance of the occupant restraint systems due to body-borne equipment. A pilot study was conducted to demonstrate the application of three-dimensional anthropometric scanning and measurement technology to address critical concerns related to vehicle design. Detailed posture and belt fit data were gathered from five law enforcement officers as they sat in the patrol vehicles that they regularly used and in a mockup of a mid-sized vehicle.
Journal Article

Development of a Methodology for Simulating Seat Back Interaction Using Realistic Body Contours

2013-04-08
2013-01-0452
Seat comfort is driven in part by the fit between the sitter and seat. Traditional anthropometric data provide little information about the size and shape of the torso that can be used for backrest design. This study introduces a methodology for using three-dimensional computer models of the human torso based on a statistical analysis of body shapes for conducting automated fit assessments. Surface scan data from 296 men and 417 women in a seated posture were analyzed to create a body shape model that can be adjusted to a range of statures, body shape, and postures spanning those typical of vehicle occupants. Finite-element models of two auto seat surface were created, along with custom software that generates body models and postures them in the seat. A simple simulation technique was developed to rapidly assess the fit of the torso relative to the seat back.
Journal Article

An Eyellipse for Rear Seats with Fixed Seat Back Angles

2011-04-12
2011-01-0596
This paper describes the development of the fixed seat eyellipse in the October 2008 revision of SAE Recommended Practice J941. The eye locations of 23 men and women with a wide range of stature were recorded as they sat in each of three second-row bench seats in a laboratory mockup. Testing was conducted at 19-, 23-, and 27-degree seat back angles. Regression analysis demonstrated that passenger eye location was significantly affected by stature and by seat back angle. The regression results were used to develop an elliptical approximation of the distribution of adult passenger eye locations, applying a methodology previously used to develop the driver eyellipse in SAE J941-2002.
Technical Paper

Comparison of Child Body Dimensions with Rear Seat Geometry

2006-04-03
2006-01-1142
Children who are too large for harness restraints but too small to obtain good restraint from a vehicle seatbelt alone should be seated in a belt-positioning booster. Boosters have been shown to significantly reduce abdominal injuries caused by seatbelts. This effectiveness may be due in part to the fact that boosters reduce the effective seat cushion length, allowing children to sit more comfortably without slouching. NHTSA recommends that children who do not use harness restraints use boosters until they are at least 145 cm tall. In this paper, data from several sources were combined to assess how well children fit on rear seat cushions. Data from NASS-GES were analyzed to determine the age distribution of rear-seat occupants. Anthropometric data from several sources were analyzed to determine the distribution of buttock-popliteal length, a measure of thigh length that is a key determinant of seat fit, as a function of age and gender.
Technical Paper

A New Database of Child Anthropometry and Seated Posture for Automotive Safety Applications

2005-04-11
2005-01-1837
This paper presents a laboratory study of body dimensions, seated posture, and seatbelt fit for children weighing from 40 to 100 lb (18 to 45 kg). Sixty-two boys and girls were measured in three vehicle seats with and without each of three belt-positioning boosters. In addition to standard anthropometric measurements, three-dimensional body landmark locations were recorded with a coordinate digitizer in sitter-selected and standardized postures. This new database quantifies the vehicle-seated postures of children and provides quantitative evidence of the effects of belt-positioning boosters on belt fit. The data will provide guidance for child restraint design, crash dummy development, and crash dummy positioning procedures.
Technical Paper

Torso Kinematics in Seated Reaches

2004-06-15
2004-01-2176
Simulations of humans performing seated reaches require accurate descriptions of the movements of the body segments that make up the torso. Data to generate such simulations were obtained in a laboratory study using industrial, auto, and truck seats. Twelve men and women reached to push-button targets located throughout their right-hand reach envelopes as their movements were recorded using an electromagnetic tracking system. The data illustrate complex patterns of motion that depend on target location and shoulder range of motion. Pelvis motion contributes substantially to seated reach capability. On padded seats, the effective center of rotation of the pelvis is often within the seat cushion below the pelvis rather than at the hips. Lumbar spine motions differ markedly depending on the location of the target. A categorization of reach targets into four zones differentiated by torso kinematics is proposed.
Technical Paper

Methods for Laboratory Investigation of Truck and Bus Driver Postures

2000-12-04
2000-01-3405
Few studies have systematically examined the effects of truck and bus workstation geometry on driver posture and position. This paper presents methods for determining drivers' postural responses and preferred component locations using a reconfigurable vehicle mockup. Body landmark locations recorded using a three-dimensional digitizer are used to compute a skeletal-linkage representation of the drivers' posture. A sequential adjustment procedure is used to determine the preferred positions and orientations of key components, including the seat, steering wheel, and pedals. Data gathered using these methods will be used to create new design tools for trucks and buses, including models of driver-selected seat position, eye location, and needed component adjustment ranges. The results will also be used to create accurate posture-prediction models for use with human modeling software.
Technical Paper

Comparison of Methods for Predicting Automobile Driver Posture

2000-06-06
2000-01-2180
Recent research in the ASPECT (Automotive Seat and Package Evaluation and Comparison Tools) program has led to the development of a new method for automobile driver posture prediction, known as the Cascade Model. The Cascade Model uses a sequential series of regression functions and inverse kinematics to predict automobile occupant posture. This paper presents an alternative method for driver posture prediction using data-guided kinematic optimization. The within-subject conditional distributions of joint angles are used to infer the internal cost functions that guide tradeoffs between joints in adapting to different vehicle configurations. The predictions from the two models are compared to in-vehicle driving postures.
Technical Paper

Automobile Occupant Posture Prediction for Use with Human Models

1999-03-01
1999-01-0966
A new method of predicting automobile occupant posture is presented. The Cascade Prediction Model approach combines multiple independent predictions of key postural degrees of freedom with inverse kinematics guided by data-based heuristics. The new model, based on posture data collected in laboratory mockups and validated using data from actual vehicles, produces accurate posture predictions for a wide range of passenger car interior geometries. Inputs to the model include vehicle package dimensions, seat characteristics, and occupant anthropometry. The Cascade Prediction Model was developed to provide accurate posture prediction for use with any human CAD model, and is applicable to many vehicle design and safety assessment applications.
Technical Paper

ASPECT Manikin Applications and Measurements for Design, Audit, and Benchmarking

1999-03-01
1999-01-0965
The ASPECT (Automotive Seat and Package Evaluation and Comparison Tools) manikin provides new capabilities for vehicle and seat measurement while maintaining continuity with previous practices. This paper describes how the manikin is used in the development of new designs, the audit verification of build, and in benchmarking competitive vehicles and seats. The measurement procedures are discussed in detail, along with the seat and package dimensions that are associated with the new tool.
Technical Paper

ASPECT: The Next-Generation H-Point Machine and Related Vehicle and Seat Design and Measurement Tools

1999-03-01
1999-01-0962
The ASPECT program was conducted to develop new Automotive Seat and Package Evaluation and Comparison Tools. This paper presents a summary of the objectives, methods, and results of the program. The primary goal of ASPECT was to create a new generation of the SAE J826 H-point machine. The new ASPECT manikin has an articulated torso linkage, revised seat contact contours, a new weighting scheme, and a simpler, more user-friendly installation procedure. The ASPECT manikin simultaneously measures the H-point location, seat cushion angle, seatback angle, and lumbar support prominence of a seat, and can be used to make measures of seat stiffness. In addition to the physical manikin, the ASPECT program developed new tools for computer-aided design (CAD) of vehicle interiors. The postures and positions of hundreds of vehicle occupants with a wide range of body size were measured in many different vehicle conditions.
Technical Paper

Design and Development of the ASPECT Manikin

1999-03-01
1999-01-0963
The primary objective of the ASPECT (Automotive Seat and Package Evaluation and Comparison Tools) program was to develop a new generation of the SAE J826 H-point manikin. The new ASPECT manikin builds on the long-term success of the H-point manikin while adding new measurement capability and improved ease of use. The ASPECT manikin features an articulated torso linkage to measure lumbar support prominence; new contours based on human subject data; a new weighting scheme; lightweight, supplemental thigh, leg, and shoe segments; and a simpler, user-friendly installation procedure. This paper describes the new manikin in detail, including the rationale and motivation for the design features. The ASPECT manikin maintains continuity with the current SAE J826 H-point manikin in important areas while providing substantial new measurement capability.
Technical Paper

Development of an Improved Airbag-Induced Thermal Skin Burn Model

1999-03-01
1999-01-1065
The UMTRI Airbag Skin Burn Model has been improved through laboratory testing and the implementation of a more flexible heat transfer model. A new impinging jet module based on laboratory measurements of heat flux due to high-velocity gas jets has been added, along with an implicit finite-difference skin conduction module. The new model can be used with airbag gas dynamics simulation outputs, or with heat flux data measured in the laboratory, to predict the potential for thermal skin burn due to exposure to airbag exhaust gas.
Technical Paper

New Concepts in Vehicle Interior Design Using ASPECT

1999-03-01
1999-01-0967
The ASPECT (Automotive Seat and Package Evaluation and Comparison Tools) program developed a new physical manikin for seat measurement and new techniques for integrating the seat measurements into the vehicle design process. This paper presents an overview of new concepts in vehicle interior design that have resulted from the ASPECT program and other studies of vehicle occupant posture and position conducted at UMTRI. The new methods result from an integration of revised versions of the SAE seat position and eyellipse models with the new tools developed in ASPECT. Measures of seat and vehicle interior geometry are input to statistical posture and position prediction tools that can be applied to any specified user population or individual occupant anthropometry.
Technical Paper

ATD Positioning Based on Driver Posture and Position

1998-11-02
983163
Current ATD positioning practices depend on seat track position, seat track travel range, and design seatback angle to determine appropriate occupant position and orientation for impact testing. In a series of studies conducted at the University of Michigan Transportation Research Institute, driver posture and position data were collected in forty-four vehicles. The seat track reference points currently used to position ATDs (front, center, and rear of the track) were found to be poor predictors of the average seat positions selected by small female, midsize male, and large male drivers. Driver-selected seatback angle was not closely related to design seatback angle, the measure currently used to orient the ATD torso. A new ATD Positioning Model was developed that more accurately represents the seated posture and position of drivers who match the ATD statures.
Technical Paper

Development of an Improved Driver Eye Position Model

1998-02-23
980012
SAE Recommended Practice J941 describes the eyellipse, a statistical representation of driver eye locations, that is used to facilitate design decisions regarding vehicle interiors, including the display locations, mirror placement, and headspace requirements. Eye-position data collected recently at University of Michigan Transportation Research Institute (UMTRI) suggest that the SAE J941 practice could be improved. SAE J941 currently uses the SgRP location, seat-track travel (L23), and design seatback angle (L40) as inputs to the eyellipse model. However, UMTRI data show that the characteristics of empirical eyellipses can be predicted more accurately using seat height, steering-wheel position, and seat-track rise. A series of UMTRI studies collected eye-location data from groups of 50 to 120 drivers with statures spanning over 97 percent of the U.S. population. Data were collected in thirty-three vehicles that represent a wide range of vehicle geometry.
X