Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Simulation Based Predesign and Experimental Validation of a Prechamber Ignited HPDI Gas Combustion Concept

2019-04-02
2019-01-0259
Using natural gas in large bore engines reduces carbon dioxide emissions by up to 25% at a lower fuel cost than diesel engines. In demanding applications with highly transient operating profiles, however, premix gas engines have disadvantages compared to diesel engines because of the potential for knocking and misfire to occur. Operating a gas engine using the diesel cycle requires high gas injection pressures. Furthermore, a source of ignition is needed due to the high autoignition temperature of methane. State-of-the-art solutions inject a small quantity of diesel fuel before introducing the natural gas. One monofuel alternative ignites the gas jets with flame torches that originate in a prechamber. This paper presents the simulation based development of a prechamber ignited high pressure direct injection (HPDI) gas combustion concept and subsequent experimental validation.
Technical Paper

Application and Validation of the 3D CFD Method for a Hydrogen Fueled IC Engine with Internal Mixture Formation

2006-04-03
2006-01-0448
Hydrogen is seen as a promising energy carrier for a future mobility scenario. Applied as fuel in IC engines with internal mixture formation, hydrogen opens up new vistas for the layout of the combustion system. The 3D CFD simulation of internal mixture formation as well as combustion helps to understand the complex in-cylinder processes and provides a powerful tool to optimize the engine's working cycle. The performance of standard simulation models for mixture formation as well as the performance of a user-defined combustion model applied in a commercial CFD-code is discussed within this article. The 3D CFD simulations are validated with measurements obtained from a thermodynamic and from an optical research engine respectively.
Technical Paper

Investigations on Combustion and Heat Transfer in a Large Gaseous Fuelled Engine

2003-03-03
2003-01-0562
The 3D CFD method has become an essential and reliable tool for the development of modern large gaseous-fuelled engines. This holds especially true for the optimization of mixture formation and charge motion in prechamber engines to ensure suitable conditions near the spark plug at ignition time. In order to initialize a quick combustion process, an ignitable mixture with high turbulence but moderate velocity must prevail round the spark plug. However, suitable models for combustion and heat transfer are inevitable for a realistic simulation of the whole engine cycle. Within 3D CFD codes the combustion process is usually calculated using the PDF (probability density function) - model; heat transfer is modeled based on the logarithmic wall function. Experimental investigations were carried out on a single cylinder research engine in order to validate the combustion model used and different heat transfer models.
X