Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Standard

Filter Element Cleaning Methods

2020-10-09
CURRENT
AIR787B
This SAE Aerospace Information Report (AIR) provides technical information to assist the development of specific cleaning methods for those filter elements which are designated as "cleanable" and cannot be cleaned by simple and obvious procedures.
Standard

Importance of Physical and Chemical Properties of Aircraft Hydraulic Fluids

2019-10-02
CURRENT
AIR81E
This document discusses the relative merits of the physical and chemical properties of hydraulic fluids in relation to the aerospace hydraulic system design, and the related materials compatibility. The discussion in this report applies both to hydrocarbon and phosphate ester based aircraft hydraulic fluids. In some cases, numerical limits are suggested, but, in general, the significance and effect of a property is noted qualitatively.
Standard

Filter Element Cleaning Methods

2013-10-08
HISTORICAL
AIR787A
This SAE Aerospace Information Report (AIR) provides technical information to assist the development of specific cleaning methods for filter elements. Consideration is limited to filter elements which are designated as "cleanable" (not "disposable"), but which cannot be cleaned by simple and obvious procedures. Cleaning methods developed according to this report should be evaluated by the methods of ARP725. Satisfactory cleaning methods can be developed for most "cleanable" filter elements. Technical or economic feasibility of the cleaning method may be limited, however, by incompatibility of filter-element construction materials, by mechanical weakness or lack of corrosion resistance to withstand repeated or continued cleaning, or by the presence of unusually tenacious contamination. These factors must be considered when selecting approaches to the development of specific methods.
Standard

Aerospace-Particle Count Data Conversion and Extrapolation

2012-09-24
CURRENT
AIR877C
This SAE Aerospace Information Report (AIR) describes a mathematical model that can be used to analyze particle count data. Particle counts that fit the model can be graphically displayed, converted from one counting size-frequency range to another, and extrapolated to estimate counts beyond the measured range. Derivation, applications, and calculations are described.
Standard

Aerospace - Evaluation of Particulate Contamination in Hydraulic Fluid - Membrane Procedure

2008-06-04
HISTORICAL
ARP4285
This SAE Aerospace Recommended Practice (ARP) establishes a method for evaluating the particulate matter extracted from the working fluid of a hydraulic system or component using a membrane. The amount of particulate matter deposited on the membrane due to filtering a given quantity of fluid is visually compared against a standard membrane in order to provide an indication of the cleanliness level of the fluid. A particular feature of this method is the membrane preparation to achieve an even particulate distribution on the membrane suitable for other applications. Membrane evaluation using standard membranes, described in this document, is an alternative technique to counting with either an optical microscope (ARP598) or an automatic particle counter (ISO 11500). The latter particle counting procedures are considered more precise.
Standard

Procedure for the Determination of Particulate Contamination of Air in Dust Controlled Spaces by the Manual Particle Count Method

2001-03-01
HISTORICAL
ARP743B
This SAE Aerospace Recommended Practice (ARP) describes two procedures for sampling particles in dust controlled spaces. One procedure covers airborne dust above 5 μm. The other (and newly added procedure) covers particles of 25 μm and larger that “fall out” of the environment onto surfaces. In each case the particles are sized in the longest dimension and counted. Airborne particles are reported as particles per cubic meter (cubic foot) whereas particles collected in fall out samples are reported as particles per 0.1 square meter (square foot). This document includes English units in parentheses as referenced information to the SI units where meaningful. These procedures may also be used for environmental analysis where the quality of the particles by visual or chemical analysis is intended.
Standard

AEROSPACE-PARTICLE COUNT DATA CONVERSION AND EXTRAPOLATION

1993-03-02
HISTORICAL
AIR877A
This Aerospace Information Report (AIR) describes a mathematical model that can be used to analyze particle count data. Particle counts that fit the model can be graphically displayed, converted from one counting size-frequency range to another, and extrapolated to estimate counts beyond the measured range. Derivation, applications and calculations are described.
Standard

PARTICLE COUNT DATA CONVERSION AND EXTRAPOLATION

1993-01-01
HISTORICAL
AIR877
This report describes a mathematical model which can be used to analyze particle count data. Particle counts which fit the model can be graphically displayed. converted from one counting size-frequency range to another, and extrapolated to estimate counts beyond the measured range. Derivation, applications and calculations are described.
Standard

FILTER-ELEMENT CLEANING METHODS

1991-11-01
HISTORICAL
AIR787
This Aerospace Information Report provides technical information to assist the development of specific cleaning methods for filter elements. Consideration is limited to filter elements which are designated as "cleanable" (not "disposable"), but which cannot be cleaned by simple and obvious procedures. Cleaning methods developed according to this report should be evaluated by the methods of ARP 725 and ARP 849. Satisfactory cleaning methods can be developed for most "cleanable" filter elements. Technical or economic feasibility of the cleaning method may be limited, however, by incompatibility of filter-element construction materials, by mechanical weakness or lack of corrosion resistance to withstand repeated or continued cleaning, or by the presence of unusually tenacious contamination. These factors must be considered when selecting approaches to the development of specific methods.
Standard

PROCEDURE FOR THE DETERMINATION OF PARTICULATE CONTAMINATION OF HYDRAULIC FLUIDS BY THE PARTICLE COUNT METHOD

1991-11-01
HISTORICAL
ARP598
This test describes a self-checking procedure for the determination of particulate contaminant five microns or greater in size in hydraulic fluids by the particle count method. A maximum variation of two to one (±33% of the average of two runs) in results should be expected for replicate counts on the same sample, providing that the procedure is followed closely and the precautions presented on pages 10 and 11 of the procedure, regarding manipulation, check samples and self-checking aspects, are observed.
Standard

PROCEDURE FOR THE DETERMINATION OF PARTICULATE CONTAMINATION OF AIR IN DUST CONTROLLED SPACES BY THE PARTICLE COUNT METHOD

1962-08-30
HISTORICAL
ARP743
This test describes a self-checking procedure for the determination of particulate contaminant five microns or greater in size in air by the particle count method. A maximum variation of two to one (±33% of the average of two runs) in results should be expected for replicate counts on the same sample, providing that the procedure is followed closely and the precautions presented regarding check samples and self-checking aspects are observed.
X