Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Mixture Formation and Auto-Ignition Behavior of Pure and Mixed Normal Paraffin Fuels

2003-10-27
2003-01-3096
Fuel formulation for premixed charge compression ignition (PCCI) combustion has been attempted based on the mixture formation and auto-ignition behavior of normal paraffin fuels. Different pure and mixed fuels with different blending ratios are tested. The mixture formation behavior is investigated photographically in a constant volume combustion chamber (CVCC) at elevated temperature and pressure. Auto-ignition behavior is tested in a Fuel Ignition Analyzer under different test conditions. It is found that the evaporation rate of pure n-paraffin fuel increases and the ignition delay becomes longer with decreases in the chain length. In the range of test condition used in this study, the flash-boiling phenomenon affects the fuel evaporation rate and ignition delay to some extent. Based on the experimental results a mixture of a very light mixture promoting component (MPC) and a moderately dense igniting component (IC) at a ratio of 3:1 is found to be optimum for PCCI combustion.
Technical Paper

Exhaust Purification of Diesel Engines by Homogeneous Charge with Compression Ignition Part 1: Experimental Investigation of Combustion and Exhaust Emission Behavior Under Pre-Mixed Homogeneous Charge Compression Ignition Method

1997-02-24
970313
A homogeneous Charge Compression Ignition Diesel Combustion (HCDC) system has been experimentally studied for it's effect on exhaust purification of diesel engines. In this system, most fuel is injected into the intake manifold to form homogeneous pre-mixture in the combustion chamber beforehand and the pre-mixture is ignited with a small amount of fuel directly injected into the cylinder by a conventional injection system. Because this system performs homogeneous lean-burn, it can realize low emission which cannot be realized by conventional diesel engines without impairing ignition controllability in the operations ranging from idle to full load. In particular, although the operating regions were strictly limited, extremely low Nox emission levels of as low as 10 to 40 ppm were realized with maintaining low smoke emissions, when the ratio of pre-mixed fuel was increased up to approx. 98%.
X