Refine Your Search

Topic

Search Results

Standard

Multiposition Small Engine Exhaust System Fire Ignition Suppression

2020-10-06
CURRENT
J335_202010
This SAE Recommended Practice establishes equipment and test procedures for determining the performance of spark arrester exhaust systems of multiposition small engines (<19 kW) used in portable applications, including hand-held, hand-guided, and backpack mounted devices. It is not applicable to spark arresters used in vehicles or stationary equipment.
Standard

Multiposition Small Engine Exhaust System Fire Ignition Suppression

2012-10-23
HISTORICAL
J335_201210
This SAE Recommended Practice establishes equipment and test procedures for determining the performance of spark arrester exhaust systems of multiposition small engines (<19 kW) used in portable applications, including hand-held, hand-guided, and backpack mounted devices. It is not applicable to spark arresters used in vehicles or stationary equipment.
Standard

Crankcase Emission Control Test Code

2012-01-23
CURRENT
J900_201201
The purpose of this SAE STandard is to provide standard test procedures for crankcase emission control systems and/or devices. The procedures included are for determining: a. The flow rate of the blowby of an engine; b. The flow rates through the crankcase emission control system inlet and outlet. This code is written to cover crankcase emission control systems which are designed to reduce the emission of engine blowby gases to the atmosphere. The code includes the following sections: 3. Definitions and Terminology; 4. Test Equipment; 5. Test Procedures; 6. Information and Data to be Recorded; 7. Data Analysis; 8. Presentation of Information and Data.
Standard

Emissions Terminology and Nomenclature

2011-09-06
CURRENT
J1145_201109
This SAE Recommended Practice applies to nomenclature of emissions and emissions reduction apparatus as applied to various engines and vehicles. Modifying adjectives are omitted in some cases for the sake of simplicity. However, it is considered good practice to use such adjectives when they add to clarity and understanding.
Standard

Manual Transmission and Transaxle Efficiency and Parasitic Loss Measurement

2011-09-02
CURRENT
J2453_201109
Because of the intense focus on CAFE and fuel emission standards, optimization of the automobile drivetrain is imperative. In light of this, component efficiencies have become an important factor in the drivetrain decision-making process. It has therefore become necessary to develop a universal standard to judge transmission efficiency. This SAE Recommended Practice specifies the dynamometer test procedure which maps a manual transmission’s efficiency. The document is separated into two parts. The first compares input and output torque throughout a specified input speed range in order to determine “in-gear” transmission efficiency. The second procedure measures parasitic losses experienced while in neutral at nominal idling speeds and also churning losses while in gear. The application of this document is intended for passenger car and light truck. All references to transmissions throughout this document include transaxles.
Standard

Engine Terminology and Nomenclature - General

2011-08-05
CURRENT
J604_201108
This SAE Recommended Practice is applicable to all types of reciprocating engines including two-stroke cycle and free piston engines, and was prepared to facilitate clear understanding and promote uniformity in nomenclature. Modifying adjectives in some cases were omitted for simplicity. However, it is good practice to use adjectives when they add to clarity and understanding.
Standard

Instrumentation and Techniques for Exhaust Gas Emissions Measurement

2011-06-10
CURRENT
J254_201106
This SAE Recommended Practice establishes uniform laboratory techniques for the continuous and bag-sample measurement of various constituents in the exhaust gas of the gasoline engines installed in passenger cars and light-duty trucks. The report concentrates on the measurement of the following components in exhaust gas: hydrocarbons (HC), carbon monoxide (CO), carbon dioxide (CO2), oxygen (O2), and nitrogen oxides (NOx). NOx is the sum of nitric oxide (NO) and nitrogen dioxide (NO2). A complete procedure for testing vehicles may be found in SAE J1094. This document includes the following sections: 1. Scope 2. References 3. Emissions Sampling Systems 4. Emissions Analyzers 5. Data Analysis 6. Associated Test Equipment 7. Test Procedures
Standard

Emissions Terminology and Nomenclature

2002-10-21
HISTORICAL
J1145_200210
This SAE Recommended Practice applies to nomenclature of emissions and emissions reduction apparatus as applied to various engines and vehicles. Modifying adjectives are omitted in some cases for the sake of simplicity. However, it is considered good practice to use such adjectives when they add to clarity and understanding.
Standard

Engine Testing with Low-Temperature Charge Air-cooler Systems in a Dynamometer Test Cell

2002-10-21
HISTORICAL
J1937_200210
The methods presented in this SAE Recommended Practice apply to the controlled testing of low-temperature charge, air-cooled, heavy-duty diesel engines. This document encompasses the following main sections: a Definitions of pertinent parameters b Vehicle testing to determine typical values for these parameters c Description of the setup and operation of the test cell system d Validation testing of the test cell system While not covered in this document, computer modeling of the vehicle engine cooler system is recognized as a valid tool to determine cooler system performance and could be utilized to supplement the testing described. However, adequate in-vehicle testing should be performed to validate the model before it is used for the purposes outlined. The procedure makes references to test cycles that are prescribed by the United States Environmental Protection Agency (US EPA) and are contained in the Code of Federal Regulations.
Standard

ENGINE TERMINOLOGY AND NOMENCLATURE—GENERAL

1995-06-28
HISTORICAL
J604_199506
This SAE Recommended Practice is applicable to all types of reciprocating engines including two-stroke cycle and free piston engines, and was prepared to facilitate clear understanding and promote uniformity in nomenclature. Modifying adjectives in some cases were omitted for simplicity. However, it is good practice to use adjectives when they add to clarity and understanding.
Standard

IMPACT OF ALTERNATIVE FUELS ON ENGINE TEST AND REPORTING PROCEDURES

1995-06-28
HISTORICAL
J1515_199506
The guidelines in this SAE Information Report are directed at laboratory engine dynamometer test procedures with alternative fuels, and they are applicable to four-stroke and two-stroke cycle spark ignition (SI) and diesel (CI) engines (naturally aspirated or pressure charged, with or without charge air cooling). A brief overview of investigations with some alternative fuels can be found in SAE J1297. Other SAE documents covering vehicle, engine, or component testing may be affected by use of alternative fuels. Some of the documents that may be affected can be found in Appendix A. Guidelines are provided for the engine power test code (SAE J1349) in Appendix D. The principles of these guidelines may apply to other procedures and codes, but the effects have not been investigated. The report is organized into four technical sections, each dealing with an important aspect of testing or reporting of results when using alternative fuels.
Standard

CRANKCASE EMISSION CONTROL TEST CODE

1995-03-02
HISTORICAL
J900_199503
The purpose of this SAE Standard is to provide standard test procedures for crankcase emission control systems and/or devices. The procedures included are for determining: a The flow rate of the blowby of an engine b The flow rates through the crankcase emission control system inlet and outlet This code is written to cover crankcase emission control systems which are designed to reduce the emission of engine blowby gases to the atmosphere. The code includes the following sections: 3. Definitions and Terminology 4. Test Equipment 5. Test Procedures 6. Information and Data to be Recorded 7. Data Analysis 8. Presentation of Information and Data
Standard

CONTINUOUS HYDROCARBON ANALYSIS OF DIESEL EMISSIONS

1995-03-01
HISTORICAL
J215_199503
The method presented is the current recommendation for the use of flame ionization detectors to determine the hydrocarbon content of diesel engine exhaust, or exhaust of vehicles using diesel engines, when operating at steady-state. The requirements of the associated sampling system and a general procedure for a continuous measuring method are presented.
Standard

DIESEL ENGINE SMOKE MEASUREMENT

1995-02-24
HISTORICAL
J255_199502
Measurement of diesel smoke in an accurate and consistent manner has been a serious problem for engine and vehicle manufacturers, users, and agencies charged with enforcing smoke limits. Several instruments, based on different principles and using different scales, are commonly used. In addition to these, human observation and judgment are often used to relate smoke to a variety of standards. The purpose of this SAE Information Report is to provide an understanding of the nature of diesel smoke, how it can be measured, and how the various measurement methods can be correlated. Except for defining the various types of smoke, the report deals solely with the steady-state measurement of visible, black smoke emitted from diesel engines. For the benefit of those who wish to study various aspects of the subject in greater depth, a list of useful references is included in Section 2. This document is divided into the following sections:
Standard

INSTRUMENTATION AND TECHNIQUES FOR VEHICLE REFUELING EMISSIONS MEASUREMENT

1993-05-01
HISTORICAL
J1045_199305
This SAE Recommended Practice describes a procedure for measuring the hydrocarbon emissions occurring during the refueling of passenger cars and light trucks. It can be used as a method for investigating the effects of temperatures, fuel characteristics, etc., on refueling emissions in the laboratory. It also can be used to determine the effectiveness of evaporative emissions control systems to control refueling emissions. For this latter use, standard temperatures, fuel volatility, and fuel quantities are specified.
Standard

MEDIUM- AND HEAVY-DUTY TRUCK CONVERTER/MUFFLER CONFIGURATION

1993-02-19
HISTORICAL
J1642_199302
This SAE Draft Technical Report is intended to document the technical consensus of the current design state of converter/mufflers for heavy-duty emission classification diesel vehicle applications. This will maximize standardization and promote interchangeability of parts from different manufacturers.
Standard

EMISSIONS TERMINOLOGY AND NOMENCLATURE

1993-02-01
HISTORICAL
J1145_199302
This SAE Recommended Practice applies to nomenclature of emissions and emissions reduction apparatus as applied to various engines and vehicles. Modifying adjectives are omitted in some cases for the sake of simplicity. However, it is considered good practice to use such adjectives when they add to clarity and understanding.
Standard

CONSTANT VOLUME SAMPLER SYSTEM FOR EXHAUST EMISSIONS MEASUREMENT

1992-06-01
HISTORICAL
J1094_199206
This SAE Information Report describes uniform laboratory techniques for employing the constant volume sampler (CVS) system in measuring various constituents in the exhaust gas of gasoline engines installed on passenger cars and light trucks. The techniques described relate particularly to CVS systems employing positive displacement pumps. This is essentially an almost obsolete system relative to usage in industry and government. Current practice favors the use of a critical flow venturi to measure the diluted exhaust flow. In some areas of CVS practice, alternative procedures are given as a guide toward development of uniform laboratory techniques. The report includes the following sections: Introduction 1. Scope 2. References 2.1 Applicable Publications 3. Definitions 4. Test Equipment 4.1 Sampler 4.2 Bag Analysis 4.3 Modal Analysis 4.4 Instrument Operating Procedures 4.5 Supplementary Discussions 4.6 Tailpipe Connections 4.7 Chassis Dynamometer 5.
Standard

ENGINE WEIGHT, DIMENSIONS, CENTER OF GRAVITY, AND MOMENT OF INERTIA

1992-04-01
HISTORICAL
J2038_199204
This SAE Recommended Practice has been developed to provide a uniform method for reporting the weight, dimensions, center of gravity, and moment of inertia of internal combustion engines. SAE J2038 is not intended to cover the technical interface between the engine and transmission. To locate the rear of the engine crankshaft in relationship to the rear of the flywheel housing, refer to SAE J617.
X