Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Fresh and Aged Organic Aerosol Emissions from Renewable Diesel-Like Fuels HVO and RME in a Heavy-Duty Compression Ignition Engine

2023-04-11
2023-01-0392
A modern diesel engine is a reliable and efficient mean of producing power. A way to reduce harmful exhaust and greenhouse gas (GHG) emissions and secure the sources of energy is to develop technology for an efficient diesel engine operation independent of fossil fuels. Renewable diesel fuels are compatible with diesel engines without any major modifications. Rapeseed oil methyl esters (RME) and other fatty acid methyl esters (FAME) are commonly used in low level blends with diesel. Lately, hydrotreated vegetable oil (HVO) produced from vegetable oil and waste fat has found its way into the automotive market, being approved for use in diesel engines by several leading vehicle manufacturers, either in its pure form or in a mixture with the fossil diesel to improve the overall environmental footprint. There is a lack of data on how renewable fuels change the semi-volatile organic fraction of exhaust emissions.
Technical Paper

High-Speed Imaging of Main-Chamber Combustion of a Narrow Throat Pre-Chamber under Lean Conditions

2020-09-15
2020-01-2081
Pre-chamber combustion (PCC) allows an extension on the lean limit of an internal combustion engine (ICE). This combustion mode provides lower NOx emissions and shorter combustion durations that lead to a higher indicated efficiency. In the present work, a narrow throat pre-chamber was tested, which has a unique nozzle area distribution in two rows of six nozzle holes each. Tests were carried out in a modified heavy-duty engine for optical visualization. Methane was used as fuel for both the pre-chamber and the main chamber. Seven operating points were tested, including passive pre-chamber mode as a limit condition, to study the effect of pre- and main-chamber fuel addition on the pre-chamber jets and the main chamber combustion via chemiluminescence imaging. A typical cycle of one of the tested conditions is explained through the captured images. Observations of the typical cycle reveal a predominant presence of only six jets (from the lower row), with well-defined jet structures.
Journal Article

Computational Study of a Multiple Fuel Injector Concept under High-Load and High-EGR Conditions

2020-09-15
2020-01-2034
A new concept utilizing multiple fuel injectors was proven effective at reducing heat transfer losses by directing spray plumes further away from the combustion chamber walls. In this concept, two injectors are mounted close to the rim of the piston bowl and point in opposite directions to generate swirling in-cylinder bulk motion. Moreover, a new flat-bowl piston design was also proposed in combination with the multiple fuel injectors for even larger improvements in thermal efficiency. However, all tests were performed at low-to-medium load conditions with no significant EGR. Modern engine concepts, such as the double compression-expansion engine (DCEE), have demonstrated higher thermal efficiency when operated at high-load conditions with a large amount of EGR for NOx control. Thus, this study aims to assess the effectiveness of the multiple-fuel-injector system under such conditions. In this study, a number of 3-D CFD simulations are performed using the RANS technique in CONVERGE.
Technical Paper

Effect of Pre-Chamber Enrichment on Lean Burn Pre-Chamber Spark Ignition Combustion Concept with a Narrow-Throat Geometry

2020-04-14
2020-01-0825
Pre-chamber spark ignition (PCSI) combustion is an emerging lean-burn combustion mode capable of extending the lean operation limit of an engine. The favorable characteristic of short combustion duration at the lean condition of PCSI results in high efficiencies compared to conventional spark ignition combustion. Since the engine operation is typically lean, PCSI can significantly reduce engine-out NOx emissions while maintaining short combustion durations. In this study, experiments were conducted on a heavy-duty engine at lean conditions at mid to low load. Two major studies were performed. In the first study, the total fuel energy input to the engine was fixed while the intake pressure was varied, resulting in varying the global excess air ratio. In the second study, the intake pressure was fixed while the amount of fuel was changed to alter the global excess air ratio.
Technical Paper

Isobaric Combustion for High Efficiency in an Optical Diesel Engine

2020-04-14
2020-01-0301
Isobaric combustion has been proven a promising strategy for high efficiency as well as low nitrogen oxides emissions, particularly in heavy-duty Diesel engines. Previous single-cylinder research engine experiments have, however, shown high soot levels when operating isobaric combustion. The combustion itself and the emissions formation with this combustion mode are not well understood due to the complexity of multiple injections strategy. Therefore, experiments with an equivalent heavy-duty Diesel optical engine were performed in this study. Three different cases were compared, an isochoric heat release case and two isobaric heat release cases. One of the isobaric cases was boosted to reach the maximum in-cylinder pressure of the isochoric one. The second isobaric case kept the same boost levels as the isochoric case. Results showed that in the isobaric cases, liquid fuel was injected into burning gases. This resulted in shorter ignition delays and thus a poor mixing level.
Technical Paper

Regulated Emissions and Detailed Particle Characterisation for Diesel and RME Biodiesel Fuel Combustion with Varying EGR in a Heavy-Duty Engine

2019-12-19
2019-01-2291
This study investigates particulate matter (PM) and regulated emissions from renewable rapeseed oil methyl ester (RME) biodiesel in pure and blended forms and contrasts that to conventional diesel fuel. Environmental and health concerns are the major motivation for combustion engines research, especially finding sustainable alternatives to fossil fuels and reducing diesel PM emissions. Fatty acid methyl esters (FAME), including RME, are renewable fuels commonly used from low level blends with diesel to full substitution. They strongly reduce the net carbon dioxide emissions. It is largely unknown how the emissions and characteristics of PM get altered by the combined effect of adding biodiesel to diesel and implementing modern engine concepts that reduce nitrogen oxides (NOx) emissions by exhaust gas recirculation (EGR).
Technical Paper

Fuel Flexibility Study of a Compression Ignition Engine at High Loads

2019-12-19
2019-01-2193
Engine experiments were performed on a single-cylinder heavy-duty engine at relatively high loads to investigate the regions where the combustion characteristics are unchanged regardless of the fuel octane number. Primary Reference Fuels (PRFs) and three different commercial fuels with RON values ranging from 0 to 100 were tested in this study. A sweep of net indicated mean effective pressure (IMEPNet) of 5 to 20 bar, absolute intake pressure of 1.5 to 2.8 bar, exhaust gas recirculation (EGR) of 0 to 40%, and fuel injection pressure of 700 to 1400 bar were performed to investigate the combustion characteristics, ignition delay time, combustion duration, efficiency, and emissions. At the highest load point (IMEPNet = 20 bar), all the fuels burn as in conventional diesel combustion. Despite the wide range of octane numbers, all fuels had similar ignition delay time, combustion duration, indicated efficiency, and emissions at 10 to 20 bar IMEPNet.
Technical Paper

The Physical and Chemical Effects of Fuel on Gasoline Compression Ignition

2019-04-02
2019-01-1150
In the engine community, gasoline compression ignition (GCI) engines are at the forefront of research and efforts are being taken to commercialize an optimized GCI engine in the near future. GCI engines are operated typically at Partially Premixed Combustion (PPC) mode as it offers better control of combustion with improved combustion stability. While the transition in combustion homogeneity from convectional Compression Ignition (CI) to Homogenized Charge Compression Ignition (HCCI) combustion via PPC has been comprehensively investigated, the physical and chemical effects of fuel on GCI are rarely reported at different combustion modes. Therefore, in this study, the effect of physical and chemical properties of fuels on GCI is investigated. In-order to investigate the reported problem, low octane gasoline fuels with same RON = 70 but different physical properties and sensitivity (S) are chosen.
Technical Paper

Isobaric Combustion: A Potential Path to High Efficiency, in Combination with the Double Compression Expansion Engine (DCEE) Concept

2019-01-15
2019-01-0085
The efficiency of an internal combustion engine is highly dependent on the peak pressure at which the engine operates. A new compound engine concept, the double compression expansion engine (DCEE), utilizes a two-stage compression and expansion cycle to reach ultrahigh efficiencies. This engine takes advantage of its high-integrity structure, which is adapted to high pressures, and the peak motored pressure reaches up to 300 bar. However, this makes the use of conventional combustion cycles, such as the Seiliger-Sabathe (mixed) or Otto (isochoric) cycles, not feasible as they involve a further pressure rise due to combustion. This study investigates the concept of isobaric combustion at relatively high peak pressures and compares this concept with traditional diesel combustion cycles in terms of efficiency and emissions. Multiple consecutive injections through a single injector are used for controlling the heat release rate profile to achieve isobaric heat addition.
Journal Article

Investigation of Particle Number Emission Characteristics in a Heavy-Duty Compression Ignition Engine Fueled with Hydrotreated Vegetable Oil (HVO)

2018-04-03
2018-01-0909
Diesel engines are one of the most important power generating units these days. Increasing greenhouse gas emission level and the need for energy security has prompted increasing research into alternative fuels for diesel engines. Biodiesel is the most popular among the alternatives for diesel fuel as it is biodegradable and renewable and can be produced domestically from vegetable oils. In recent years, hydrotreated vegetable oil (HVO) has also gained popularity due to some of its advantages over biodiesel such as higher cetane number, lower deposit formation, storage stability, etc. HVO is a renewable, paraffinic biobased alternative fuel for diesel engines similar to biodiesel. Unlike biodiesel, the production process for HVO involves hydrogen as catalyst instead of methanol which removes oxygen content from vegetable oil.
Technical Paper

Low Load Limit Extension for Gasoline Compression Ignition Using Negative Valve Overlap Strategy

2018-04-03
2018-01-0896
Gasoline compression ignition (GCI) is widely studied for the benefits of simultaneous reduction in nitrogen oxide (NOX) and soot emissions without compromising the engine efficiency. Despite this advantage, the operational range for GCI is not widely expanded, as the auto-ignition of fuel at low load condition is difficult. The present study aims to extend the low load operational limit for GCI using negative valve overlap (NVO) strategy. The engine used for the current experimentation is a single cylinder diesel engine that runs at an idle speed of 800 rpm with a compression ratio of 17.3. The engine is operated at homogeneous charge compression ignition (HCCI) and partially premixed combustion (PPC) combustion modes with the corresponding start of injection (SOI) at −180 CAD (aTDC) and −30 CAD (aTDC), respectively.
Technical Paper

Analysis of Transition from HCCI to CI via PPC with Low Octane Gasoline Fuels Using Optical Diagnostics and Soot Particle Analysis

2017-10-08
2017-01-2403
In-cylinder visualization, combustion stratification, and engine-out particulate matter (PM) emissions were investigated in an optical engine fueled with Haltermann straight-run naphtha fuel and corresponding surrogate fuel. The combustion mode was transited from homogeneous charge compression ignition (HCCI) to conventional compression ignition (CI) via partially premixed combustion (PPC). Single injection strategy with the change of start of injection (SOI) from early to late injections was employed. The high-speed color camera was used to capture the in-cylinder combustion images. The combustion stratification was analyzed based on the natural luminosity of the combustion images. The regulated emission of unburned hydrocarbon (UHC), carbon monoxide (CO) and nitrogen oxides (NOX) were measured to evaluate the combustion efficiency together with the in-cylinder rate of heat release.
Technical Paper

Fuel Effect on Combustion Stratification in Partially Premixed Combustion

2017-09-04
2017-24-0089
The literature study on PPC in optical engine reveals investigations on OH chemiluminescence and combustion stratification. So far, mostly PRF fuel is studied and it is worthwhile to examine the effect of fuel properties on PPC. Therefore, in this work, fuel having different octane rating and physical properties are selected and PPC is studied in an optical engine. The fuels considered in this study are diesel, heavy naphtha, light naphtha and their corresponding surrogates such as heptane, PRF50 and PRF65 respectively. Without EGR (Intake O2 = 21%), these fuels are tested at an engine speed of 1200 rpm, fuel injection pressure of 800 bar and pressure at TDC = 35 bar. SOI is changed from late to early fuel injection timings to study PPC and the shift in combustion regime from CI to PPC is explored for all fuels. An increased understanding on the effect of fuel octane number, physical properties and chemical composition on combustion and emission formation is obtained.
Technical Paper

Influence of Injection Timing on Exhaust Particulate Matter Emissions of Gasoline in HCCI and PPC

2016-10-17
2016-01-2300
In order to reduce nitrogen oxides (NOx) and soot emissions while maintaining high thermal efficiency, more advanced combustion concepts have been developed over the years, such as Homogeneous Charge Compression Ignition (HCCI) and Partially Premixed Combustion (PPC), as possible combustion processes in commercial engines. Compared to HCCI, PPC has advantages of lower unburned hydrocarbon (UHC) and carbon monoxide (CO) emissions; however, due to increased fuel stratifications, soot emissions can be a challenge when adding Exhaust-Gas Recirculation (EGR) gas. The current work presents particle size distribution measurements performed from HCCI-like combustion with very early (120 CAD BTDC) to PPC combustion with late injection timing (11 CAD BTDC) at two intake oxygen rates, 21% and 15% respectively. Particle size distributions were measured using a differential mobility spectrometer DMS500.
Technical Paper

An Experimental Investigation of a Multi-Cylinder Engine with Gasoline-Like Fuel towards a High Engine Efficiency

2016-04-05
2016-01-0763
Partially Premixed Combustion (PPC) is a promising combustion concept with high thermodynamic efficiency and low emission level, and also with minimal modification of standard engine hardware. To use PPC in a production oriented engine, the optimal intake charge conditions for PPC should be included in the analysis. The experiments in this paper investigated and confirmed that the optimal intake conditions of net indicated efficiency for PPC are EGR between 50% and 55% as possible and the lambda close to 1.4. Heat-transfer energy and exhaust gas waste-energy contribute to the majority of the energy loss in the engine. The low EGR region has high heat-transfer and low exhaust gas enthalpy-waste, while the high EGR region has low heat-transfer and high exhaust gas waste-enthalpy. The optimal EGR condition is around 50% where the smallest energy loss is found as a trade-off between heat transfer and exhaust-gas enthalpy-waste.
Technical Paper

Transition from HCCI to PPC: the Sensitivity of Combustion Phasing to the Intake Temperature and the Injection Timing with and without EGR

2016-04-05
2016-01-0767
An experiment was conducted to investigate the effect of charge stratification on the combustion phasing in a single cylinder, heavy duty (HD) compression ignition (CI) engine. To do this the start of injection (SOI) was changed from -180° after top dead centre (ATDC) to near top dead centre (TDC) during which CA50 (the crank angle at which 50% of the fuel energy is released) was kept constant by changing the intake temperature. At each SOI, the response of CA50 to a slight increase or decrease of either intake temperature or SOI were also investigated. Afterwards, the experiment was repeated with a different intake oxygen concentration. The results show that, for the whole SOI period, the required intake temperature to keep constant CA50 has a “spoon” shape with the handle on the -180° side.
Technical Paper

Potential Levels of Soot, NOx, HC and CO for Methanol Combustion

2016-04-05
2016-01-0887
Methanol is today considered a viable green fuel for combustion engines because of its low soot emissions and the possibility of it being produced in a CO2-neutral manner. Methanol as a fuel for combustion engines have attracted interest throughout history and much research was conducted during the oil crisis in the seventies. In the beginning of the eighties the oil prices began to decrease and interest in methanol declined. This paper presents the emission potential of methanol. T-Φ maps were constructed using a 0-D reactor with constant pressure, temperature and equivalence ratio to show the emission characteristics of methanol. These maps were compared with equivalent maps for diesel fuel. The maps were then complemented with engine simulations using a stochastic reactor model (SRM), which predicts end-gas emissions. The SRM was validated using experimental results from a truck engine running in Partially Premixed Combustion (PPC) mode at medium loads.
Technical Paper

High-Speed Particle Image Velocimetry Measurement of Partially Premixed Combustion (PPC) in a Light Duty Engine for Different Injection Strategies

2015-09-06
2015-24-2454
It has been proven that partially premixed combustion (PPC) has the capability of high combustion efficiency with low soot and NOx emissions, which meet the requirements of increasingly restricted emission regulations. In order to obtain more homogenous combustion and longer ignition delay in PPC, different fuel injection strategies were employed which could affect the fuel air mixing and control the combustion. In the present work, a light duty optical diesel engine was used to conduct high speed particle image velocimetry (PIV) for single, double and triple injections with different timings. A quartz piston and a cylinder liner were installed in the Bowditch configuration to enable optical access. The geometry of the quartz piston crown is based on the standard diesel combustion chamber design for this commercial passenger car engine, including a re-entrant bowl shape.
Technical Paper

Analysis of Soot Particles in the Cylinder of a Heavy Duty Diesel Engine with High EGR

2015-09-06
2015-24-2448
When applying high amount of EGR (exhaust gas recirculation) in Partially Premixed Combustion (PPC) using diesel fuel, an increase in soot emission is observed as a penalty. To better understand how EGR affects soot particles in the cylinder, a fast gas sampling technique was used to draw gas samples directly out of the combustion chamber in a Scania D13 heavy duty diesel engine. The samples were characterized on-line using a scanning mobility particle sizer for soot size distributions and an aethalometer for black carbon (soot) mass concentrations. Three EGR rates, 0%, 56% and 64% were applied in the study. It was found that EGR reduces both the soot formation rate and the soot oxidation rate, due to lower flame temperature and a lower availability of oxidizing agents. With higher EGR rates, the peak soot mass concentration decreased. However, the oxidation rate was reduced even more.
Technical Paper

Transition from HCCI to PPC Combustion by Means of Start of Injection

2015-09-01
2015-01-1790
Partially premixed combustion (PPC) is a promising way to achieve high efficiency and low engine-out emissions simultaneously in a heavy-duty engine. Compared to Homogeneous Charge Compression Ignition (HCCI), it can be controlled by injection events and much lower HC and CO emissions can be achieved. This work focuses on the transition from HCCI to PPC and combustion and emissions characteristics during the process are investigated. Injection strategies, EGR and boost pressure were the main parameters used to present the corresponding effect during the transition.
X