Refine Your Search

Topic

Author

Search Results

Technical Paper

Efficient Post-Processing Method for Identification of Local Hotspots in 3D CFD Simulations

2022-06-14
2022-37-0005
Knocking is one of today’s main limitations in the ongoing efforts to increase efficiency and reduce emissions of spark-ignition engines. Especially for synthetic fuels or any alternative fuel type in general with a much steeper increase of the knock frequency at the KLSA, such as hydrogen, precise knock prediction is crucial to exploit their full potential. This paper therefore proposes a post-processing tool enabling further investigations to continuously gain better understanding of the knocking phenomenon. In this context, evaluation of local auto-ignitions preceding knock is crucial to improve knowledge about the stochastic occurrence of knock but also identify critical engine design to further optimize the geometry. In contrast to 0D simulations, 3D CFD simulations provide the possibility to investigate local parameters in the cylinder during the combustion.
Technical Paper

Analysis of the Applicability of Water Injection in Combination with an eFuel for Knock Mitigation and Improved Engine Efficiency

2022-06-14
2022-37-0019
The development of future gasoline engines is dominated by the study of new technologies aimed at reducing the engine negative environmental impact and increase its thermal efficiency. One common trend is to develop smaller engines able to operate in stoichiometric conditions across the whole engine map for better efficiency, lower fuel consumption, and optimal conversion rate of the three-way catalyst (TWC). Water injection is one promising technique, as it significantly reduces the engine knock tendency and avoids fuel enrichment for exhaust temperature mitigation at high power operation. With the focus on reducing the carbon footprint of the automotive sector, another vital topic of research is the investigation of new alternative CO2-neutral fuels or so-called eFuels. Several studies have already shown how these new synthetic fuels can be produced by exploiting renewable energy sources and can significantly reduce engine emissions.
Technical Paper

A Detailed Reaction Kinetics-Based Calculation Tool for Internal Combustion Engine-Related Ignition Processes

2022-06-07
2022-01-5050
Ignition delay times are major information needed to allow the simulation of auto-ignition and knocking combustion in internal combustion engines (ICEs). Due to their variance over changing boundary conditions (BC) and limitations of measurement processes, a common way to obtain them is via reaction kinetic simulations. To facilitate and accelerate the simulation process with varying operating conditions and gas composition definitions, an efficient tool that uses Cantera’s Python interface has been created. It allows the end-user to easily calculate the ignition delay data needed for engine simulation without the necessity for in-depth knowledge of the underlying processes. All calculations are based on the creation of a homogeneously mixed gaseous mixture corresponding to engine-based environmental conditions. Depending on the desired fuel, oxidizer, temperature, pressure, water, and exhaust gas recirculation (EGR) rate, the resulting reactant composition is computed.
Technical Paper

Knock Frequency-Based Knock Control

2022-06-07
2022-01-5043
Knocking is still one of today’s major limitations regarding efficiency-increasing measures for SI combustion engines. Due to the complex stochastic nature of the phenomenon, not only prediction and consideration within the engine development is of relevance. A further challenge is control of the phenomenon during engine operation, with the aim of maximizing the efficiency while preventing engine damage and maintaining the driver comfort. Conventional knock control is characterized by detecting knock events and subsequently adjusting the spark timing depending on whether knock was detected. This paper proposes a new knock control concept based on the prediction and direct control of the knock frequency, compared to the conventional reactive and indirect control of the knock frequency. For the prediction of the knock frequency, a calculation approach based on three different parameters is utilized.
Technical Paper

The Influence of eFuel Formulation on Post Oxidation and Cold Start Emissions

2021-04-06
2021-01-0632
The goal of reducing the impact of road transportation on the environment can be reached by different approaches. The use of non-fossil synthetic fuels from renewable energy sources in the entire fleet of internal combustion engine vehicles is only one promising pathway to minimize the vehicle’s carbon footprint during the use phase. The steadily tightening emissions legislation confront the developers of future combustion engines with major challenges: Historically, the chemical and physical improvement of the combustion process, tail pipe emissions reduction and the development of optimized after-treatment systems were linked to improvements in fuel quality. In order to further decrease exhaust gas emissions, the optimization of the chemical composition of renewable fuels are a basic requirement.
Technical Paper

New Criteria for 0D/1D Knock Models to Predict the Knock Boundary for Different Gasoline Fuels

2021-04-06
2021-01-0377
As engine knock limits the efficiency of spark ignition engines and consequently further reduction of CO2 emissions, SI engines are typically designed to operate at the knock boundary. Therefore, a precise knock model is necessary to consider this phenomenon in an engine process simulation. The basis of the introduced 0D/1D knock model is to predict when the unburnt mixture auto-ignites, since auto-ignitions precede knocking events. The knock model further needs to evaluate the auto-ignition, because not every auto-ignition results in engine knock. As the introduced model’s prediction of the auto-ignition onset is already validated at extensive variations of operating conditions, this publication focusses on its evaluation. For this, two new, independent criteria are developed that take the pre-reactions of the unburnt mixture before the start of combustion into account to calculate a respective threshold for the auto-ignition onset at the knock boundary.
Technical Paper

A Phenomenological Carbon Monoxide Model for Diesel Engines

2021-04-06
2021-01-0375
Intensified emission regulations as well as consumption demands lead to an increasing significance of carbon monoxide (CO) emissions for diesel engines. On the one hand, the quantity of CO raw emissions is important for emission predictions as well as for the exhaust gas after treatment. On the other hand, CO emissions are also important for predicting combustion efficiency and thus fuel consumption, since a part of unreleased chemical energy of the fuel is still bound in the CO molecules. Due to these reasons, a simulation model for predicting CO raw emissions was developed for diesel engines based on a phenomenological two-zone model. The CO model takes three main sources of CO emissions of diesel engines into account: Firstly, it contains a sub model that describes CO from local understoichiometric areas. Secondly, CO emissions from overmixed regions are considered.
Technical Paper

Thermodynamic Influences of the Top Land Volume on the Late Combustion Phase - A New Research Approach

2021-04-06
2021-01-0468
As the late combustion phase in SI engines is of high importance for a further reduction of fuel consumption and especially emissions, the impacts of unburnt mass, located in a small volume with a relatively large surface near the wall and in the top land volume, is of high relevance throughout the range of operation. To investigate and quantify the respective interactions, a state of the art Mercedes-Benz single cylinder research SI-engine was equipped with extensive measurement technology. To detect the axial and radial temperature distribution, several surface thermocouples were applied in two layers around the top land volume. As an additional reference, multiple surface thermocouples in the cylinder head complement the highly dynamic temperature measurements in the boundary zones of the combustion chamber.
Technical Paper

Potential of Pre-Turbo Exhaust Gas Aftertreatment Systems in Electrified Powertrains

2021-04-06
2021-01-0579
In order to operate effectively, exhaust gas aftertreatment (EAT) systems require a certain temperature level. The trend towards higher grades of hybridisation causes longer switch-off phases of the internal combustion engine (ICE) during which the EAT components cool down. Additionally, efficiency enhancements of the ICE result in lower exhaust gas temperatures. In combination with further strengthening of the legal requirements regarding tailpipe emissions, new approaches are desired to ensure reliable emission reductions under all conditions. One possibility to achieve a faster warm-up of the EAT system is to place it upstream of the turbine, where temperatures are higher. Although, the extra thermal inertia and larger volume upstream of the turbine delay the throttle response, even a light hybridisation is sufficient for compensating the dynamic loss.
Technical Paper

Investigation and 1D Modelling Approach on Scavenging Air Post-Oxidation inside the Exhaust Manifold of a DISI Engine

2021-04-06
2021-01-0599
The introduction of real driving emission measurements increases the need of improved transient engine behavior while keeping the emissions to a minimum. A possible way of enhancing the transient engine behavior is the targeted usage of scavenging. Scavenging is realized by an inlet- and exhaust-valve overlap. Fresh scavenging air flows directly from intake manifold through the cylinder into the exhaust manifold. Therefore, the mass flow at the turbine increases and causes a reduced turbo lag, which results in a more dynamic engine behavior. The unburned oxygen causes a decrease of the three-way catalyst (TWC) conversion rate. To keep the TWC operation close to stoichiometry, a rich combustion is performed. The rich combustion products (most notably carbon monoxide) mix in the exhaust manifold and react with oxygen so that the conversion rate of the TWC is ensured.
Technical Paper

Investigation of the Piston Pin Movement, Rotation and Oil Filling Ratio of the Piston Boss

2021-04-06
2021-01-0646
The general objectives of this research are the identification of relevant factors that influence the movement and rotation behavior of the piston pin and to characterize the oil filling ratio in the piston boss. For this purpose, an experimental measurement campaign with load and speed variation is carried out on an engine test bench. The key challenge is the implementation of the extensive measurement technology on a series V6 engine. For the detection of the radial piston pin movement in stroke and transversal direction four eddy current sensors are used, two per direction. With a combined measuring principle the oil filling ratio can be determinated. Therefore two additional capacitive sensors are placed between the eddy current sensors. Depending on the hydrodynamic friction conditions in the piston pin bearing as well as the thermal and mechanical boundary conditions, the pivoting movement of the connecting rod initiates the rotation of the piston pin.
Technical Paper

Knock Model Covering Thermodynamic and Chemical Influences on the Two-Stage Auto-Ignition of Gasoline Fuels

2021-04-06
2021-01-0381
Engine knock is limiting the efficiency of spark ignition engines and consequently further reduction of CO2 emissions. Thus, an combustion process simulation needs a well working knock model to take this phenomenon into account. As knocking events result from auto-ignitions, the basis of a knock model is the accurate modeling of the latter. For this, the introduced 0D/1D knock model calculates the Livengood-Wu integral to estimate the state of the pre-reactions of the unburnt mixture and considers the two-stage auto-ignition of gasoline fuels, which occurs at specific boundary conditions. The model presented in this publication is validated against measurement data of a single cylinder engine. For this purpose, more than 12 000 knocking working cycles are investigated, covering extensively varied operating conditions for a wide-ranging validation.
Technical Paper

A Phenomenological Unburned Hydrocarbon Model for Diesel Engines

2020-09-15
2020-01-2006
Intensified emission regulations as well as consumption demands lead to an increasing significance of unburned hydrocarbon (UHC) emissions for diesel engines. On the one hand, the quantity of hydrocarbon (HC) raw emissions is important for emission predictions as well as for the exhaust after treatment. On the other hand, HC emissions are also important for predicting combustion efficiency and thus fuel consumption, since a part of unreleased chemical energy of the fuel is still bound in the HC molecules. Due to these reasons, a simulation model for predicting HC raw emissions was developed for diesel engines based on a phenomenological two-zone model. The HC model takes three main sources of HC emissions of diesel engines into account: Firstly, it contains a sub-model that describes the fuel dribble out of the injector after the end of injection. Secondly, HC emissions from cold peripheral zones near cylinder walls are determined in another sub-model.
Technical Paper

Investigation of H2 Formation Characterization and its Contribution to Post- Oxidation Phenomenon in a Turbocharged DISI Engine

2020-09-15
2020-01-2188
In this research, simulation and experimental investigation of H2 emission formation and its influence during the post-oxidation phenomenon were conducted on a turbo-charged spark ignition engine. During the post-oxidation phenomenon phase, rich air-fuel ratio (A/F) is used inside the cylinder. This rich excursion gives rise to the production of H2 emission by various reactions inside the cylinder. It is expected that the generation of this H2 emission can play a key role in the actuation of the post-oxidation and its reaction rate if enough temperature and mixing strength are attained. It is predicted that when rich combustion inside the cylinder will take place, more carbon monoxide (CO)/ Total Hydro Carbon (THC)/ Hydrogen (H2) contents will arrive in the exhaust manifold. This H2 content facilitates in the production of OH radical which contributes to the post-oxidation reaction and in-turn can aid towards increasing the enthalpy.
Journal Article

The Virtual Engine Development for Enhancing the Compression Ratio of DISI-Engines Combining Water Injection, Turbulence Increase and Miller Strategy

2020-06-30
2020-37-0010
The increase in efficiency is the focus of current engine development by adopting different technologies. One limiting factor for the rise of SI-engine efficiency is the onset of knock, which can be mitigated by improving the combustion process. HCCI/SACI represent sophisticated combustion techniques that investigate the employment of pre-chamber with lean combustion, but the effective use of them in a wide range of the engine map, by fulfilling at the same time the need of fast load control are still limiting their adoption for series engine. For these reasons, the technologies for improving the characteristics of a standard combustion process are still largely investigated. Among these, water injection, in combination with the Miller cycle, offers the possibility to increase the knock resistance, which in turn enables the rise of the engine geometric compression ratio.
Technical Paper

Discretization and Heat Transfer Calculation of Engine Water Jackets in 1D-Simulation

2020-04-14
2020-01-1349
The industry is working intensively on the precision of thermal management. By using complex thermal management strategies, it is possible to make engine heat distribution more accurate and dynamic, thereby increasing efficiency. Significant efforts are made to improve the cooling efficiency of the engine water jacket by using 3D CFD. As well, 1D simulation plays a significant role in the design and analysis of the cooling system, especially for considering transient behaviour of the engine. In this work, a practice-oriented universal method for creating a 1D water jacket model is presented. The focus is on the discretization strategy of 3D geometry and the calculation of heat transfer using Nusselt correlations. The basis and reference are 3D CFD simulations of the water jacket. Guidelines for the water jacket discretization are proposed. The heat transfer calculation in the 1D-templates is based on Nusselt-correlations (Nu = Nu(Re, Pr)), which are derived from 3D CFD simulations.
Technical Paper

The Isochoric Engine

2020-04-14
2020-01-0796
For the gasoline engine, the isochoric process is the ideal limit of the ideal processes. During the project, a combustion engine with real isochoric boundary conditions is built. A “resting time” of the piston for several degrees crank angle in the top dead center (TDC) can be realized with a special crank drive. This crank drive consists of two crankshafts with different strokes, which are combined. The two crankshafts rotate with a ratio of two to one in opposite directions. The total stroke corresponds to the amount of the first crankshaft, so it is possible to investigate different strokes of the second crankshaft in the same crankcase. Different “resting times” can be achieved by different strokes of the second crankshaft. A specific combination of both crankshafts make a stroke possible which corresponds to that of a conventional combustion engine.
Technical Paper

Potential Analysis and Virtual Development of SI Engines Operated with Synthetic Fuel DMC+

2020-04-14
2020-01-0342
On the way to emission-free mobility, future fuels must be CO2 neutral. To achieve this, synthetic fuels are being developed. In order to better assess the effects of the new fuels on the engine process, simulation models are being developed that reproduce the chemical and physical properties of these fuels. In this paper, the fuel DMC+ is examined. DMC+ (a mixture of dimethyl carbonate (DMC) and methyl formate (MeFo) mainly, characterized by the lack of C-C Bonds and high oxygen content) offers advantages with regard to evaporation heat, demand of oxygen and knock resistance. Furthermore, its combustion is almost particle free. With the aid of modern 0D/1D simulation methods, an assessment of the potential of DMC+ can be made. It is shown that the simulative conversion of a state-of-the-art gasoline engine to DMC+ fuel offers advantages in terms of efficiency in many operating points even if the engine design is not altered.
Technical Paper

The Application of E-Fuel Oxymethylene Ether OME1 in a Virtual Heavy-Duty Diesel Engine for Ultra-Low Emissions

2020-04-14
2020-01-0349
For long haul transport, diesel engine due to its low fuel consumption and low operating costs will remain dominant over a long term. In order to achieve CO2 neutrality, the use of electricity-based, synthetic fuels (e-fuels) provides a solution. Especially the group of oxymethylene ethers (OME) is given much attention because of its soot-free combustion. However, the new fuel properties and the changed combustion characteristics place new demands on engine design. Meanwhile, the use of new fuels also creates new degrees of freedom to operate diesel engines. In this work, the application of dimethoxymethane (OME1) is investigated by means of 1D simulation at three operating points in a truck diesel engine. The subsystems of fuel injection, air path and exhaust gas are sequentially adjusted for the purpose of low emissions, especially for low nitrogen oxides (NOx).
Technical Paper

A Quasi-Dimensional SI Burn Rate Model for Predicting the Effects of Changing Fuel, Air-Fuel-Ratio, EGR and Water Injection

2020-04-14
2020-01-0574
As a result of the R&D focus being shifted from internal combustion engines to electrified powertrains, resources for the development of internal combustion engines are restricted more and more. With that, the importance of highly efficient engine development tools is increased. In this context, 0D/1D engine simulation offers the advantage of low computational effort and fast engine model set-up. To ensure a high predictive ability of the engine simulation, a reliable burn rate model is needed. Considering the increasing interest in alternative fuels, the aspect of predicting the fuel influence on combustion is of special importance. To reach these targets, the change of engine combustion characteristics with changing fuels and changing air-fuel-ratios were investigated systematically in a first step. For this purpose, engine test bed data were compared with expected fuel-dependent flame wrinkling trends based on Markstein/Lewis number theory.
X