Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Mixture Formation Process Analysis in Spray and Wall Impingement Spray under Evaporating Conditions for Direct injection S.I. engines

2023-09-29
2023-32-0015
In this study, the authors analyze the concentration distribution of an evaporative spray mixture with LIEF (Laser induced exciplex fluorescence) method, which is a type of optical measurement. LIEF method is one of the optical measurements for obtaining the spray concentration distribution for separating vapor/liquid phases based on the fluorescence characteristics. In this paper, a quantitative concentration distribution analysis method for wall impingement spray in heterogeneous temperature field has been proposed. Then, a series of experiments were performed in varying injection pressure and ambient density. As a result, a two-dimensional concentration distribution was obtained for the free spray and wall impingement spray.
Technical Paper

The Effect of Engine Parameters on In-Cylinder Pressure Reconstruction from Vibration Signals Based on a DNN Model in CNG-Diesel Dual-Fuel Engine

2023-04-11
2023-01-0861
In marine or stationary engines, consistent engine performance must be guaranteed for long-haul operations. A dual-fuel combustion strategy was used to reduce the emissions of particulates and nitrogen oxides in marine engines. However, in this case, the combustion stability was highly affected by environmental factors. To ensure consistent engine performance, the in-cylinder pressure measured by piezoelectric pressure sensors is generally measured to analyze combustion characteristics. However, the vulnerability to thermal drift and breakage of sensors leads to additional maintenance costs. Therefore, an indirect measurement via a reconstruction model of the in-cylinder pressure from engine block vibrations was developed. The in-cylinder pressure variation is directly related to the block vibration; however, numerous noise sources exist (such as, valve impact, piston slap, and air flowage).
Journal Article

Combustion Phenomena and Emissions in a Dual-Fuel Optical Engine Fueled with Diesel and Natural Gas

2021-09-21
2021-01-1175
The application of dual-fuel combustion in the freight transportation sectors has received considerable attention due to the capability of achieving higher fuel efficiency and less pollutant emissions than the conventional diesel engines. In this study, high-speed flame visualization was used to investigate the phenomena of natural gas/diesel dual-fuel combustion in a single-cylinder heavy-duty engine with optical access. To implement diverse fuel blending conditions, diesel injection timing and natural gas substitution ratio were varied under constant fuel energy input. A novel flame regime separation method was implemented based on color segmentation in HSV color space to characterize the spatial distributions of premixed and non-premixed flame regimes. Flame images for larger natural gas substitution showed a significant reduction in the non-premixed flame regime accompanied by flame propagation along the vaporized diesel sprays.
Technical Paper

Effects of Spray Internal EGR Using CO2 Gas Dissolved Fuel on Combustion Characteristics and Emissions in Diesel Engine

2020-01-24
2019-32-0592
We have proposed the application of Exhaust Gas Recirculation (EGR) gas dissolved fuel which might improve spray atomization through effervescent atomization instead of high injection pressure. Since EGR gas is included in the spray of EGR gas dissolved fuel, it directly contributes to combustion, and the further reduction of NOx emissions is expected rather than the conventional external EGR. In our research, since highly contained in the exhaust gas and highly soluble in the fuel, CO2 was selected as the dissolved gas to simulate EGR gas dissolved. In this paper, the purpose is to evaluate the influence of the application of CO2 gas dissolved fuel on the combustion characteristics and emission characteristics inside the single cylinder, direct injection diesel engine. As a result, by use of the fuel, smoke was reduced by about 50 to 70%, but NOx reduction does not have enough effect.
Technical Paper

Improvement of Hybrid Scheme for WAVE-MTAB Model and Analytical Study of Diesel Spray Using Theory on the Spray Similarity

2019-12-19
2019-01-2324
In order to further improve the thermal efficiency of diesel engines, this report focuses on the influence of injection condition on similarity of similar spray. To accurately reproduce the diesel spray in our laboratory, the WAVE-MTAB model was developed, and improvements were made to switch between two breakup models. As a result, switching of the breakup model can be done according to the physical phenomenon, and it is considered that similar spray can be reproduced generally well when using theory on the spray similarity.
Technical Paper

Effects of Hot and Cooled EGR for HC Reduction in a Dual-Fuel Premixed Charge Compression Ignition Engine

2018-09-10
2018-01-1730
Most internal combustion engine makers have adopted after-treatment systems, such as selective catalytic reduction (SCR), diesel particulate filter (DPF), and diesel oxidation catalyst (DOC), to meet emission regulations. However, as the emission regulations become stricter, the size of the after-treatment systems become larger. This aggravates the price competitiveness of engine systems and causes fuel efficiency to deteriorate due to the increased exhaust pressure. Dual-fuel premixed charge compression ignition (DF-PCCI) combustion, which is one of the advanced combustion technologies, makes it possible to reduce nitrogen oxides (NOx) and particulate matter (PM) during the combustion process, while keeping the combustion phase controllability as a conventional diesel combustion (CDC). However, DF-PCCI combustion produces high amounts of hydrocarbon (HC) and carbon monoxide (CO) emissions due to the bulk quenching phenomenon under low load conditions as a huddle of commercialization.
Technical Paper

Improvement of Spray and Combustion Process by Applying CO2 Gas Dissolved Fuel

2017-11-05
2017-32-0046
The CO2 gas dissolved fuel for the diesel combustion is effective to reduce the NOx emissions to achieve the internal EGR (Exhaust Gas Recirculation) effect by fuel. This method has supplied EGR gas to the fuel side instead of supply EGR gas to the intake gas side. The fuel has followed specific characteristics for the diesel combustion. When the fuel is injected into the chamber in low pressure, this CO2 gas is separated from the fuel spray. The distribution characteristics of the spray are improved and the improvement of the thermal efficiency by reduction heat loss in the combustion chamber wall, and reduce soot emissions by the lean combustion is expected. Furthermore, this CO2 gas decreases the flame temperature. Further, it is anticipated to reduce NOx emissions by the spray internal EGR effect.
Technical Paper

Effect of Injector Nozzle Hole Geometry on Particulate Emissions in a Downsized Direct Injection Gasoline Engine

2017-09-04
2017-24-0111
In this study, the effect of the nozzle tip geometry on the nozzle tip wetting and particulate emissions was investigated. Various designs for the injector nozzle hole were newly developed for this study, focusing on the step hole geometry to reduce the nozzle tip wetting. The laser induced fluorescence technique was applied to evaluate the fuel wetting on the nozzle tip. A vehicle test and an emissions measurement in a Chassi-Dynamo were performed to investigate the particulate emission characteristics for injector nozzle designs. In addition, the in-cylinder combustion light signal measurement by the optical fiber sensor was conducted to observe diffusion combustion behavior during the vehicle test. Results showed that the step hole surface area is strongly related to nozzle tip wetting and particulate emissions characteristics. Injectors without the step hole and with a smaller step hole geometry showed significant reduction of nozzle tip wetting and number of particulate emissions.
Technical Paper

Visualization of Cavitation Inside Nozzle Hole and Injected Liquid Jet

2015-09-01
2015-01-1908
The atomization structure of the fuel spray is known to be affected by flow conditions and cavitation inside the nozzle hole. In this paper, the cavitation phenomena inside the nozzle hole was visualized by using large-scale transparent nozzles, as well as the effect of length-to-width ratio (l/w ratio) of the nozzle hole on cavitation and on the behavior of injection liquid jet. In addition, various flow patterns inside the nozzle hole same as experimental conditions were simulated by the use of Cavitation model incorporated in Star-CCM+, which was compared with experimental results.
Technical Paper

Effects of Hydrogen Ratio and EGR on Combustion and Emissions in a Hydrogen/Diesel Dual-Fuel PCCI Engine

2015-09-01
2015-01-1815
The effects of hydrogen ratio and exhaust gas recirculation (EGR) on combustion and emissions in a hydrogen/diesel dual-fuel premixed charge compression ignition (PCCI) engine were investigated. The control of combustion phasing could be improved using hydrogen enrichment and EGR due to the retarded combustion phasing with a higher hydrogen ratio. The indicated mean effective pressure (IMEP) was increased with a higher hydrogen ratio because the hydrogen enrichment intensified the high temperature reactions and thus decreased the combustion duration. Hydrocarbon (HC) and carbon monoxide (CO) emissions were reduced significantly in a hydrogen/diesel dual-fuel PCCI mode with a similar NOx emissions level as that of the diesel PCCI mode.
Technical Paper

Compressible Large-Eddy Simulation of Diesel Spray Structure using OpenFOAM

2015-09-01
2015-01-1858
The compressible Large-Eddy Simulation (LES) for the diesel spray with OpenFOAM is presented to reduce CPU time by massively parallel computing of the scalar type supercomputer (CRAY XE6) and simulate the development of the non-evaporative and the evaporative spray. The maximum computational speeds are 14 times (128 cores) and 43 times (128 cores) for of the non-evaporative spray and the spray flame with one-step reaction, respectively, compared to the one core simulation. In the spray flame simulation with the reduced reaction mechanism (29 species, 52 reactions), the maximum computational speed is 149 times (512 cores). Then LES of the non-evaporative and the evaporative spray (Spray A) are calculated. The results indicate that the spray tip penetration is well predicted, although the size of the computational domain must be set equal to that of the experiment.
Journal Article

Direct Dual Fuel Stratification, a Path to Combine the Benefits of RCCI and PPC

2015-04-14
2015-01-0856
Control of the timing and magnitude of heat release is one of the biggest challenges for premixed compression ignition, especially when attempting to operate at high load. Single-fuel strategies such as partially premixed combustion (PPC) use direct injection of gasoline to stratify equivalence ratio and retard heat release, thereby reducing pressure rise rate and enabling high load operation. However, retarding the heat release also reduces the maximum work extraction, effectively creating a tradeoff between efficiency and noise. Dual-fuel strategies such as reactivity controlled compression ignition (RCCI) use premixed gasoline and direct injection of diesel to stratify both equivalence ratio and fuel reactivity, which allows for greater control over the timing and duration of heat release. This enables combustion phasing closer to top dead center (TDC), which is thermodynamically favorable.
Technical Paper

Effect of Injection Strategy on Low Temperature - Conventional Diesel Combustion Mode Transition

2015-04-14
2015-01-0836
Low Temperature Combustion (LTC) is known to be feasible only in lower load ranges so in real world application of LTC, engine operation mode should frequently change back and forth between LTC mode in lower loads and conventional mode in higher loads. In this research, effect of injection strategy on smoothness and emissions during mode transition in a single cylinder heavy duty diesel engine is studied. The Exhaust Gas Recirculation (EGR) line was controlled by a servo-valve capable of opening or closing the EGR loop within only one engine cycle. Ten cycles after the EGR valve closure were taken as the transition period during which injection timing and quantity were shifted in various ways (i.e. injection strategies) and the effect on Indicated Mean Effective Pressure (IMEP) stability and emissions was studied.
Technical Paper

Highway Fuel Economy Testing of an RCCI Series Hybrid Vehicle

2015-04-14
2015-01-0837
In the current work, a series-hybrid vehicle has been constructed that utilizes a dual-fuel, Reactivity Controlled Compression Ignition (RCCI) engine. The vehicle is a 2009 Saturn Vue chassis and a 1.9L turbo-diesel engine converted to operate with low temperature RCCI combustion. The engine is coupled to a 90 kW AC motor, acting as an electrical generator to charge a 14.1 kW-hr lithium-ion traction battery pack, which powers the rear wheels by a 75 kW drive motor. Full vehicle testing was conducted on chassis dynamometers at the Vehicle Emissions Research Laboratory at Ford Motor Company and at the Vehicle Research Laboratory at Oak Ridge National Laboratory. For this work, the US Environmental Protection Agency Highway Fuel Economy Test was performed using commercially available gasoline and ultra-low sulfur diesel. Fuel economy and emissions data were recorded over the specified test cycle and calculated based on the fuel properties and the high-voltage battery energy usage.
Journal Article

Improving the Understanding of Intake and Charge Effects for Increasing RCCI Engine Efficiency

2014-04-01
2014-01-1325
The present experimental engine efficiency study explores the effects of intake pressure and temperature, and premixed and global equivalence ratios on gross thermal efficiency (GTE) using the reactivity controlled compression ignition (RCCI) combustion strategy. Experiments were conducted in a heavy-duty single-cylinder engine at constant net load (IMEPn) of 8.45 bar, 1300 rev/min engine speed, with 0% EGR, and a 50% mass fraction burned combustion phasing (CA50) of 0.5°CA ATDC. The engine was port fueled with E85 for the low reactivity fuel and direct injected with 3.5% 2-ethylhexyl nitrate (EHN) doped into 91 anti-knock index (AKI) gasoline for the high-reactivity fuel. The resulting reactivity of the enhanced fuel corresponds to an AKI of approximately 56 and a cetane number of approximately 28. The engine was operated with a wide range of intake pressures and temperatures, and the ratio of low- to high-reactivity fuel was adjusted to maintain a fixed speed-phasing-load condition.
Journal Article

Experimental Investigation of Engine Speed Transient Operation in a Light Duty RCCI Engine

2014-04-01
2014-01-1323
Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that utilizes in-cylinder fuel blending to produce low NOx and PM emissions while maintaining high thermal efficiency. The current study investigates RCCI and conventional diesel combustion (CDC) operation in a light-duty multi-cylinder engine over transient operating conditions using a high-bandwidth, transient capable engine test cell. Transient RCCI and CDC combustion and emissions results are compared over an up-speed change from 1,000 to 2,000 rev/min. and a down-speed change from 2,000 to 1,000 rev/min. at a constant 2.0 bar BMEP load. The engine experiments consisted of in-cylinder fuel blending with port fuel-injection (PFI) of gasoline and early-cycle, direct-injection (DI) of ultra-low sulfur diesel (ULSD) for the RCCI tests and the same ULSD for the CDC tests.
Technical Paper

Spray and Combustion Visualization of Gasoline and Diesel under Different Ambient Conditions in a Constant Volume Chamber

2013-10-14
2013-01-2547
Spray and combustion of gasoline and diesel were visualized under different ambient conditions in terms of pressure, temperature and density in a constant volume chamber. Three different ambient conditions were selected to simulate the three combustion regimes of homogeneous charge compression ignition, premixed charge compression ignition and conventional combustion. Ambient density was varied from 3.74 to 23.39 kg/m3. Ambient temperature at the spray injection were controlled to the range from 474 to 925 K. Intake oxygen concentration was also modulated from 15 % to 21 % in order to investigate the effects of intake oxygen concentrations on combustion characteristics. The injection pressure of gasoline and diesel were modulated from 50 to 150 MPa to analyze the effect of injection pressure on the spray development and combustion characteristics. Liquid penetration length and vapor penetration length were measured based on the methods of Mie-scattering and Schileren, respectively.
Journal Article

Strategy for Mode Transition between Low Temperature Combustion and Conventional Combustion in a Diesel Engine

2013-09-08
2013-24-0058
Mode transition between low temperature combustion (LTC) and conventional combustion was performed by changing the exhaust gas recirculation (EGR) rate from 60% to 0% or vice versa in a light duty diesel engine. The indicated mean effective pressure (IMEP) before mode transition was set at 0.45 MPa, representing the maximum load of LTC in this research engine. Various engine operating parameters (rate of EGR change, EGR path length, and residual gas) were considered in order to investigate their influence on the combustion mode transition. The characteristics of combustion mode transition were analyzed based on the in-cylinder pressure and hydrocarbon (HC) emission of each cycle. The general results showed that drastic changes of power output, combustion noise, and HC emission occurred during the combustion mode transition due to the improper injection conditions for each combustion mode.
Technical Paper

Diesel Knock Visualization and Frequency Analysis of Premixed Charge Compression Ignition Combustion with a Narrow Injection Angle

2013-04-08
2013-01-0906
In this study, premixed charge compression ignition (PCCI) combustion was implemented using an injector that had a narrow injection angle of 70° and a moderately early injection timing of -40° crank angle after top dead center (CA ATDC). In-cylinder pressure measurements and high-speed direct imaging of the flame were performed in an optically accessible single-cylinder diesel engine. Frequency analysis of the acquired in-cylinder pressure data was carried out to obtain the frequency range of diesel knock. Meanwhile, image segmentation and a tracking algorithm based on YCbCr color space were implemented to determine the frequency range of diesel knock from the obtained high-speed image. The results show that the frequency of diesel knock was dominated by the range from 13 kHz to 15 kHz. Still, frequency with low power existed down until 7 kHz. The frequencies of the area movement were shown to be 13 kHz and, in some cases, 8.67 kHz.
Technical Paper

Efficiency and Emissions Mapping of RCCI in a Light-Duty Diesel Engine

2013-04-08
2013-01-0289
In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOX and particulate matter (PM) emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. Varying the premixed gasoline fraction changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the use of EGR alone. This added control over the combustion process has been shown to allow rapid engine operating point exploration without direct modeling guidance.
X